
Tracking Data Structures for Tracking Data Structures for 

Postmortem AnalysisPostmortem Analysis

Xiao Xiao, Jinguo Zhou, Charles Zhang
Computer Science @ HKUST



Issues of Program Tracing

• Target:
– Collect the field  execution data for program diagnosis.

• Significance:
– Improve the software testing efficiency;
– Capture/replay the obscured program behaviours;
– Identify the performance problems.

• Challenges (e.g. whole program execution trace produced by iDNA, 
WET):
– High volume information 
– Poor information privacy
– High collection overhead



Issues of Program Tracing

• Target:
– Collect the field  execution data for program diagnosis.

• Significance:
– Improve the software testing efficiency;
– Capture/replay the obscured program behaviours;
– Identify the performance problems.

• Challenges (e.g. whole program execution trace produced by iDNA, 
WET):
– High volume information 
– Poor information privacy
– High collection overhead

partial trace
partial trace



Issues of Program Tracing

• Target:
– Collect the field  execution data for program diagnosis.

• Significance:
– Improve the software testing efficiency;
– Capture/replay the obscured program behaviours;
– Identify the performance problems.

• Challenges (e.g. whole program execution trace produced by iDNA, 
WET):
– High volume information 
– Poor information privacy
– High collection overhead incomplete trace



Partial Trace Collection
• Data structure evolution trace provides rich but non-confidential 

information for diagnosing the program.

• Consider the following literature:

– Data structure verification, [PLDI 07, Shankar];
– Heap bug detection, [ASPLOS 06, Chilimbi];
– Dynamic ownership detection, [ECOOP 06, Mitchell];
– Dynamic slicing, [ICSE 04, Tao. W]
– Memory leak detection, [ECOOP 03, Mitchell];
– Copy bloating analysis, [PLDI 09, Harry X.];
– Data layout optimization, [POPL 02, Rubin];
– Heap visualization, [SOFTVIS 10, Aftandilian];
– .....



Data Structure Trace

• A trace that can reconstruct the whole 
structural evolution of the data structures:

– Do not need reexecute the program;
– Enable forward and backward replay.



Replay with incomplete 

trace
• A trace that is lacking information for 

replay. The missing information should be 
statically computed.

• Advantages:
– Lightweight instrumentation;
– Small trace size;
– Low recording overhead.



Processing Incomplete Trace

Static dependency
analysis

Generate trace

incomplete trace

Offline recompute
the missing information

instrumented code

Recording
Time

Analysis Timesource
code



Conclusion

• We propose the data structure trace for 
diagnosing the program:

– Rich Information for postmortem analysis;
– Confidential;
– Compact;
– Low recording overhead;





Additional Notes



Case Study: Loop-incomplete 

Trace

// Traverse and truncate linked list
// header is a global pointer

1.  p = header; 
2.  q = null;
3.  while ( p != null ) {
4.      temp = p.next;
5.      if ( p.data > 10 ) {
6.          p.next = q;
7.          q = p;
8.      }
9.      p = temp;
10. }
11. header = q;

Baseline: instrumenting and monitoring 
the variables in  the statements at 4, 6, 11



// Traverse and truncate linked list
// header is a global pointer

1.  p = header; 
2.  q = null;
3.  record p;
4.  record q;
5.  while ( p != null ) {
6.      temp = p.next;
7.      if ( p.data > 10 ) {
8.          p.next = q;
9.          q = p;
10.    }
11.    p = temp;
12. }
13. header = q;

Motivation: Tracing loop is expensive.

Insights: Any piece of code can be 
reexecuted deterministically beginning with 
the same program states.

Loop-incomplete trace: Insert two 
lines (3, 4) to record the initial values of p 
and q at runtime, and maintain the execution 
sequence of the statements 6, 8, 9, 11 within 
the loop.

Case Study: Loop-incomplete 

Trace



// Traverse and truncate linked list
// header is a global pointer

1.  p = header; 
2.  q = null;
3.  record p;
4.  record q;
5.  while ( p != null ) {
6.      temp = p.next;
7.      if ( p.data > 10 ) {
8.          p.next = q;
9.          q = p;
10.    }
11.    p = temp;
12. }
13. header = q;

Loop-incomplete trace: After the 
program terminated, we symbolically 
execute the statements 6, 8, 9, 11, 13 in 
their runtime execution order. For example,

6, 8, 9, 11, 6, 11, 6, 11, 6, 8, 9, 11, 13 

Case Study: Loop-incomplete 

Trace


