
Tracking Data Structures for Postmortem Analysis
(NIER Track)

Xiao Xiao, Jinguo Zhou, Charles Zhang
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{richardxx, andyzhou, charlesz}@cse.ust.hk

ABSTRACT
Analyzing the runtime behaviors of the data structures is
important because they usually relate to the obscured pro-
gram performance and understanding issues. The runtime
evolution history of data structures creates the possibility of
building a lightweight and non-checkpointing based solution
for the backward analysis for validating and mining both the
temporal and stationary properties of the data structure.
We design and implement TAEDS, a framework that focuses
on gathering the data evolution history of a program at the
runtime and provides a virtual machine for programmers to
examine the behavior of data structures back in time. We
show that our approach facilitates many programming tasks
such as diagnosing memory problems and improving the de-
sign of the data structures themselves.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Tracing, Debugging aids

General Terms
Algorithms, Reliability

Keywords
Tracing, Data Structure, Program Analysis, Debugging

1. INTRODUCTION
A large fraction of bugs and program understanding is-

sues are related to data structures. Fred Brooks considered
the data structure as the key to understanding a program,
and wrote in his famous book, The Mythical Man-Month,
“show me your flowchart and conceal your tables, and I shall
continue to be mystified. Show me your tables, and I will not
usually need your flowchart; it will be obvious”. Thereby,
helping the programmers learn the behaviors of the data
structure significantly boosts their productivity.

However, analyzing the data structure statically is diffi-
cult and insufficient, especially if we desire the knowledge of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

how the data structures are constructed, evolved and manip-
ulated (e.g. data copying), during the program execution.
This kind of knowledge, which we call the data structure evo-
lution history, can be used to verify the structural proper-
ties, to mine anomaly behaviors, to animate the algorithms
of the host program, and finally to help the programmers
debug and optimize their code.

1.1 Why Data Structure Evolution History?
The data structure evolution history can be applied and

not limited to the following scenarios:
Monitoring. The invariant monitoring is commonly used

to guarantee the program correctness at runtime. The con-
ventional approach uses assert to validate the simple value
patterns, and checks the structural properties with the pro-
grammer supplied code. The periodical execution of the ver-
ifying code may decelerate the program dramatically. And
perhaps, the slowdown is not tolerable if other higher pri-
ority debugging tasks are affected. Moreover, changing the
focused invariants requires the re-execution of the program,
which is time consuming in some cases. A better approach is
dividing the debugging tasks into the online and the offline
ones, and performing the offline examination using the data
structure updating history. This way naturally separates the
different concerns of the debugging tasks.

Ownership Detection. An object B is owned or internal
to another object A, if B is dominated by A on the reference
graph [8]. The reference graph, from the evolution point
of view, is a snapshot of the data structure that captures
the connection relationship between objects at a particular
time. However, with only a few reference graph snapshots,
it is hard to judge whether B is owned by A or not. On
the contrary, we have the high confidence to decide if this
property holds by inspecting the whole life span of a pro-
gram execution. The ownership knowledge can be used to
help the developers learn the interactions among the high
level data structures. For example, in the memory leak de-
tection, knowing two arrays exchanging data is less useful
than knowing two hash tables exchanging data, if the arrays
are internal to different hash tables.

Memory Leak Detection. In Java, an object is consid-
ered leaked if it is no longer needed but there are still ref-
erences to it. Since we only consider the objects with long
lifetime as candidates, they are unlikely to be referenced
only by local variables. Therefore, there must be some data
structures or static fields holding the references to the leaked
objects. With the data structure evolution history, we can
easily identify the candidate objects by recording the last
visiting time of every object. If the dormant period for an

object is longer than a threshold, we report it as a candidate.
Shallow Copy Detection. A common interaction be-

tween data structures is data copying. In Java, shallow copy
is defined as making a duplicate reference to an object. The
knowledge of when the copy occurs and which data struc-
tures are involved can facilitate the following program un-
derstanding tasks:

• Data Structure Migration. We can add, delete and
modify a data structure, we can also migrate a data
structure to a new shape. A classical example is the
hashmap in JDK. When the container array is nearly
full, the resize allocates a new array and copies all the
elements to the new container. We call this action
migration. A natural usage of the migration knowledge
is that, if we know a hashmap always migrates, we
can set a larger initial capacity to reduce the overhead
incurred by the data copying.

• Copying Bloat Analysis. The copying bloat is a phrase
meaning that we copy a large quantities of useless data
from one container to another, which is a harmful but
widespread phenomenon [16]. Similar to the mem-
ory leak detection, if an object is referenced by a new
data structure but it is never accessed before that data
structure destroyed, it is a suspicious bloat copying.
We can also rephrase the methodology in [16] for the
evolving data. Suppose we have a pattern language to
specify the objects generated by a conceptual producer
and the ones consumed by the conceptual consumer.
Now, we scan the whole history and count how many
objects generated by the producer are never accessed
by the consumer. If the quantity is large, there may
be a bloat copying.

Algorithm Animation. A way to learn an algorithm
is to study how it manipulates data. For example, the in-
sert routine of the red black tree involves a sophisticated
balancing scheme. With the complete history of the insert
operation, we can visualize all the intermediate states of the
tree and help the programmer understanding.

1.2 Our Contribution Outline
Our goal is to provide a systematic way to precisely study

the data structure evolving history, and to build a platform
for a wide range of the data structure related research. To
our aim, we present TAEDS (Trace Analysis Engine for
Data Structure), a framework for investigating the data
structure evolution. TAEDS first parses and instruments
the target program, then runs that program to collect the
profiling data, i.e. the execution trace of interested data
structures. After the dynamic phase, it analyzes and repro-
cesses the obtained trace to facilitate the subsequent analy-
sis tasks. By running the program, we know accurately the
shapes and the contents of all the data structures, as well as
the side effect of each store statement (e.g. p.f = q). From
the collected trace, we can swiftly reconstruct the snapshot
of the data structure at any moment in its lifetime, without
running the program again. Moreover, we can navigate forth
and back on the trace to change the data structure gradu-
ally, which in turn supports any data mining tasks relying
on the temporal information.

We have two design guidelines for our TAEDS framework.
The first is lightweight in terms of the low runtime over-
head and the small trace size, which can be achieved by

minimizing the recorded information through static prun-
ing and dynamic compressing techniques. In contrast to
the whole program record and replay tools, such as iDNA
[1] and the omniscient debugger TOD [13], we only need
to record the information that correctly reflects the change
to the data structures, which in theory has the dramati-
cally smaller performance penalty. More concretely, some
CPU intensive applications prefer to use the local variables
in most of their computations and tend to update the data
structures infrequently. This case, for iDNA, incurs 13x-15x
overhead. For TOD, it comes with 115x slowdown and pro-
duces a large trace log (33GB), which is impractical for real
use. Therefore, from the pragmatic point of view, tracing
only the data structure is a good compromise.

Because we target a less restrictive problem (replaying
the data structure, not the whole program), we can build a
lightweight inverse execution trace (Section 2.2) to quickly
roll back the data structure to the last state. However, this
technique cannot be efficiently implemented for the univer-
sal replayers iDNA and TOD, because an instruction may
invoke many implicit memory updates, such as discarding
a large bulk of stack data when a function exits (C/C++),
or causing the garbage collector to recycle large chunks of
memory (Java). Therefore, to support the reverse debug-
ging, iDNA builds many checkpointing frames to help with
the backward navigation, which is more expensive than our
solution.

The second design guideline is flexibility. We allow the
user to selectively monitor the data structure. For example,
the user can configure the system to trace only those data
structures with the type T and its subtypes. TAEDS is also
general enough to handle the multi-threaded programs, by
recording the data structure updates for each thread sepa-
rately and remembering the access order to each shared ob-
ject, analogous to the iDNA’s mechanism [1]. Furthermore,
we provide a simple pattern matching language for program-
mers to select and mark the objects. For example, in the
bloat analysis stated above, we are able to tag the objects
that are generated by the same static allocation site.

In summary, our system TAEDS is a lightweight and pow-
erful tool to help programmers learn the data structure be-
haviors. In the next section, we will sketch the TAEDS ap-
proach for collecting and compressing the trace log with re-
spect to the single threaded program.

2. TRACKING DATA STRUCTURE
TAEDS is a hybrid static and dynamic framework for

Java. TAEDS has three components, which are shown in
Figure 1. The indexer instruments the input program, gen-
erates the source code metadata, and monitors the program
execution for collecting the raw trace data. The optimizer
tailors the trace log and builds the inverse execution trace
for the subsequent analysis, if needed. The last component,
the simulator, is both a virtual machine and programming
library that contains the primitive functions to assist the
programmers in writing the trace analysis code. Next, we
describe each of the components with special concern to the
indexer.

2.1 Trace Indexing
Our principle for the trace collection is that, we do as little

as possible while the program is running and try to recover
the missed information statically. Following this guideline,

Figure 1: System Architecture of TAEDS

the symbolic names (method name, variable name, types,
line numbers, etc.) are collected and re-linked to the trace
at static time. Only the essential information for guiding
the program execution is recorded and processed online.

Our trace log consists of the control flow and the mem-
ory access information. The control flow trace indicates the
next instruction that would be executed. We choose to im-
plement the Larus’s Sequitur algorithm [5] for recording the
control flow trace, which has high compression rate and low
compress/decompress overhead. The memory access trace
is a set of commands to express how the data structures are
updated. It records the values written to the instance fields,
the array elements and, optionally, the static fields. Next,
we introduce our approach to efficiently record and compress
the memory access trace.

We first instrument the allocation sites, by putting the
instrumentation NewObject(p) immediately after the state-
ment p = new T() of interested types T. The instrumenta-
tion writes the hashCode of the newly created object to the
log file. Next, we run the points-to analysis and gather the
pointers P, which point to the instrumented objects.

The only statement that changes the traced data structure
is the store instruction, e.g. p.f = q where p ∈ P. In the
naive approach, we should record both the object pointed
to by p and the value of q (may be a primitive type value),
which is too redundant because:

1. If p is the pointer this, we only need to record once
since it is a constant before a function terminates;

2. We may access the instance fields with the pointer p in
many different places, and p is unchanged;

3. The values of p and q may have been recorded before
and we do not need to save them twice.

The first issue can be addressed by recording the value of
this pointer at the beginning of a non-static function. The
second and third issues are handled together through the
dual value predictor, which depends on the local and global
caches. The local cache records the latest value of p (or q),
and the global cache stores the last seen K (K > 2) values
for each type (e.g. int, Object). When we process the store
p.f = q, we first compare the current value of p to its local
cache. If they are unequal, we update the local cache of p to
the current value, and then we look up or insert the global

cache with the current value of p 1 to obtain the position
i of the p’s value. The variable q is processed in the same
way. Depending on the results of the local/global cache hits
or misses of p and q, we issue different types of commands
to the trace log. For example, if both of the local caches of
p and q are hits, we only output a sentinel to indicate the
cache hits. If p hits the global cache (so it misses the local
cache), we output the position i to the log, otherwise the
real value of p is recorded.

The write to the array elements is processed in the same
way as the store statements, if distinguishing the positions
of the elements in the array is not required. Otherwise, the
element offsets are calculated and stored and we disable the
local cache to prevent the cache memory blowup. The load
statements q = p.f do not need to be processed because they
change no values of heap memory. However, in some appli-
cations, e.g. the memory leak detection, we need to update
the last visit time and count the visiting frequency for each
object, in which case every load statement is followed by an
instrumentation.

Value prediction has shown to be powerful for compress-
ing variable values [2], also demonstrated by Zhang et.al [18].
However, more sophisticated value predictors proposed in [2]
may not be functional in our problem setting. This is be-
cause, the updating history for the heap variables has the
weaker data locality compared to the whole program trace.
Therefore, the value predictors should be carefully experi-
mented before being adopted in our problem.

2.2 Trace Optimization
The most important task for the optimizer is to build the

inverse execution trace to enable the backward analysis. The
core idea is that, since every command in the trace only
slightly updates the data structure, we can roll back to any
previous states decrementally. For this purpose, given every
command describing a store p.f = q in the trace, we record
the value of p.f and generate an inverse command accord-
ingly. For example, the store statement is p.next = null,
which aims to nullify the pointer p.next. Suppose p.next
points to the object o, we generate an inverse command:
p.next = o.

Note that, this strategy works efficiently because we do
not need the local pointer information. The same treatment
applying to the whole program trace requires the additional
effort, because the local pointers should be recovered if we
go back to the return statement of a function. The inverse
trace is orthogonal to the checkpointing technology as it can
be used to help the programmers jump arbitrarily to any
moment on the timeline. However, according to our prelim-
inary study, the most common behavior of the programmers
is, as for most of the data mining tasks, navigating sequen-
tially on the trace. Therefore, our inverse trace technique is
helpful in this common setting.

2.3 Trace Simulation
The simulator is a fully featured virtual machine that can

reproduce the heap memory states for any moment in the
program execution, without presenting the user input again.
This is important for the remote debugging setting [12] or
when the input is non-reproducible, e.g. for a GUI program.
To facilitate the interaction with programmers, the simula-

1It may remove the least recent visit value if the cache is full,
and the new value inserted is marked most recent visit.

tor is designed as a programming library. For example, we
can invoke the API to identify the high level conceptual con-
tainers through ownership detection. Also, we can search for
the objects which are inactive for a long time.

We also implement a garbage collector to help calculate
the lifetime of an object. Since we do not care about the val-
ues of local pointers, the garbage collector can be invoked
after a function terminates. At this point, all the local point-
ers are set to be null, and an object is not garbage iff it is
reachable through some static fields. Therefore, traversing
our object reference graph at that moment reclaims the real
garbage, and the only side effect is that the computed life-
time of the queried object may be a bit longer.

3. RELATED WORK
Debugging via Memory Snapshots. Analyzing heap

memory snapshots has a long tradition in the area of debug-
ging. Recent work on the memory leak detection [7, 17, 10,
4], the bloat detection [16, 11, 3], the ownership detection
and summarization [8], and the source of excessive memory
footprints detection [9], all leverages the memory graph to
warn the potential performance degeneration. Our work is
orthogonal to these approaches. Our data structure evolu-
tion trace is aimed at providing the backbone support for
these techniques, so that they can be re-implemented in our
TAEDS framework with small additional efforts.

Efficient Trace Indexing. The program trace index-
ing research aims to produce compact trace logs for long
running programs, while maintaining the low runtime over-
head. The program traces research typically have three di-
rections with respect to the control flow trace [5], the value
trace [2], and the dependence trace [14], respectively. The
traces can also be highly compressed in combination with
some sophisticated scheme, such as the work of Zhang et.al
[18]. The traces can be efficiently compressed and stored in
other ways. For example, the omniscient debugger OTD [13]
incorporates database for the efficient trace retrieval. The
whole program replayer iDNA [1] compresses the trace log by
eliminating unchanged memory stores, similar to our local
cache approach. Venkataramani et.al. even use hardware
to achieve the amazingly low (2.7% avg.) runtime overhead
[15]. However, all these approaches are about capturing the
whole program trace. Since we only focus on the data struc-
ture evolution, we can achieve a better result.

Memory Graph Visualization. The automatic soft-
ware visualization is useful in debugging and education. The
compilers, e.g. LLVM and GCC, all have the ability to gener-
ate the call graph and control flow graph. Research on gener-
ating the memory graph is also active, and a good summary
is given by [19]. Since our technique compresses the whole
data structure evolution history, it is an ideal platform for
the software visualization research.

4. FUTURE RESEARCH
The idea of offering a query language for the programmers

to express their intention recently blossoms in the program
analysis area. Since many algorithms share similarities on
utilizing the trace (e.g. by graph traversal), a facility analo-
gous to PQL [6] is particularly useful for programmers who
want to quickly examine their observations. For this rea-
son, our future research will explore a declarative way for
programmers to work with the trace.

Acknowledgements
We thank the anonymous reviewers for their insightful feed-
back. This research is supported by RGC GRF grants 622208
and 622909.

5. REFERENCES
[1] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,

R. Murray, M. Drinić, D. Mihočka, and J. Chau.
Framework for instruction-level tracing and analysis of
program executions. In VEE ’06.

[2] M. Burtscher. Vpc3: a fast and effective
trace-compression algorithm. In SIGMETRICS
’04/Performance ’04.

[3] J. Clause and A. Orso. Leakpoint: pinpointing the
causes of memory leaks. In ICSE ’10.

[4] M. Jump and K. S. McKinley. Cork: dynamic memory
leak detection for garbage-collected languages. In
POPL ’07.

[5] J. R. Larus. Whole program paths. In PLDI ’99.

[6] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using pql: a
program query language. In OOPSLA ’05.

[7] E. K. Maxwell, G. Back, and N. Ramakrishnan.
Diagnosing memory leaks using graph mining on heap
dumps. In KDD ’10.

[8] N. Mitchell. The runtime structure of object
ownership. In ECOOP ’06.

[9] N. Mitchell, E. Schonberg, and G. Sevitsky. Making
sense of large heaps. In ECOOP ’09.

[10] N. Mitchell and G. Sevitsky. Leakbot: An automated
and lightweight tool for diagnosing memory leaks in
large java applications. In ECOOP ’03.

[11] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently
and precisely locating memory leaks and bloat. In
PLDI ’09.

[12] A. Orso. Monitoring, analysis, and testing of deployed
software. In FoSER ’10.

[13] G. Pothier, E. Tanter, and J. Piquer. Scalable
omniscient debugging. In OOPSLA ’07.

[14] S. Tallam, R. Gupta, and X. Zhang. Extended whole
program paths. In PACT ’05.

[15] G. Venkataramani, B. Roemer, Y. Solihin, and
M. Prvulovic. Memtracker: Efficient and
programmable support for memory access monitoring
and debugging. In HPCA ’07.

[16] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and
G. Sevitsky. Go with the flow: profiling copies to find
runtime bloat. In PLDI ’09.

[17] G. Xu and A. Rountev. Precise memory leak detection
for java software using container profiling. In ICSE
’08.

[18] X. Zhang and R. Gupta. Whole execution traces. In
MICRO ’04.

[19] T. Zimmermann and A. Zeller. Visualizing memory
graphs. In SoftVis ’01.

	Introduction
	Why Data Structure Evolution History?
	Our Contribution Outline

	Tracking Data Structure
	Trace Indexing
	Trace Optimization
	Trace Simulation

	Related Work
	Future Research
	References

