
SMOKE: Scalable Path-Sensitive Memory Leak
Detection for Millions of Lines of Code

Gang Fan∗, Rongxin Wu∗§, Qingkai Shi∗, Xiao Xiao†, Jinguo Zhou†, Charles Zhang∗
∗Hong Kong University of Science and Technology

{gfan, wurongxin, qshiaa, charlesz}@cse.ust.hk
†Sourcebrella Inc.

{xx, jinguo}@sbrella.com

Abstract—Detecting memory leak at industrial scale is still
not well addressed, in spite of the tremendous effort from
both industry and academia in the past decades. Existing work
suffers from an unresolved paradox – a highly precise analysis
limits its scalability and an imprecise one seriously hurts its
precision or recall. In this work, we present SMOKE, a staged
approach to resolve this paradox. In the first stage, instead of
using a uniform precise analysis for all paths, we use a scalable
but imprecise analysis to compute a succinct set of candidate
memory leak paths. In the second stage, we leverage a more
precise analysis to verify the feasibility of those candidates.
The first stage is scalable, due to the design of a new sparse
program representation, the use-flow graph (UFG), that models
the problem as a polynomial-time state analysis. The second stage
analysis is both precise and efficient, due to the smaller number
of candidates and the design of a dedicated constraint solver.
Experimental results show that SMOKE can finish checking
industrial-sized projects, up to 8MLoC, in forty minutes with
an average false positive rate of 24.4%. Besides, SMOKE is
significantly faster than the state-of-the-art research techniques
as well as the industrial tools, with the speedup ranging from
5.2X to 22.8X. In the twenty-nine mature and extensively checked
benchmark projects, SMOKE has discovered thirty previously-
unknown memory leaks which were confirmed by developers,
and one even assigned a CVE ID.

Index Terms—memory leak, static bug finding, use-flow graph,
value-flow graph

I. INTRODUCTION

Despite the tremendous research progress in recent

decades [1]–[9], the detection of memory leaks in industrial-

scale is still pretty much an unsolved problem. In the first

half of the year 2018, more than 680 memory leak bugs have

been reported in Firefox [10] and Chrome [11]. More than

240 CVE (Common Vulnerabilities and Exposures) entries

in 2017 are memory leaks bugs [12]. Apparently, with the

explosive growth of the code size and the complexity in

modern software [13], a practical memory detector needs to

be highly scalable, checking millions of lines of code within

minutes , and precise, understanding complex path conditions

with less than 30% false positives [14], [15].

The state-of-the-art approaches suffer from the scalability

and precision paradox. One category of the approaches [4]–[9]

give up path sensitivity for scalability, inevitably introducing

§Rongxin Wu is the corresponding author.

imprecise results. For example, we observed that, SABER [9],

a recent path-insensitive memory leak detection technique,

incurs a false positive rate of 66.7% in our evaluation. Another

category [1]–[3] traverse the control flow graph and use the

path-sensitive analysis to achieve high precision. However,

they are known to easily suffer from scalability issues, espe-

cially for the whole-program analysis. For example, SATURN

[3] is reported to have spent more than 23 hours in checking

memory leaks for a 5MLoC code base. Our experiment shows

that CSA [1] and INFER [2] fail to analyze large projects of

over 2MLoC in two hours.

Our idea to resolve this paradox is based on an observation

that, in real programs, only a small proportion of program

paths lead to memory leaks. Therefore, instead of using a

sledge hammer, i.e., the expensive path-sensitive analysis, for

all paths, we use a two-staged analysis by first computing a

succinct set of candidate memory leak paths through a novel

scalable and path-insensitive method, followed by a more

precise and heavy-weight verification of the feasibility of these

paths, in order to achieve path-sensitivity.

More specifically, to check millions of lines of code in

minutes, we believe that the sparse value-flow analysis, already

widely adopted in finding memory leaks [8], [9], is the

right direction as it tracks values along the data dependence

relations on the value flow graph (VFG) instead of the control

flow graph, skipping irrelevant program statements to achieve

scalability. However, we observe that the VFG, originally

intended for program transformations [16], is not suitable for

arbitrary finite-state-machine properties such as the memory

leak problem, due to the omission of flow information(order

of events) [8]. Therefore, instead of finding a leak path, VFG-

based methods need to deduce the leak path by checking

whether the non-leak paths (i.e., paths where the heap object is

safely freed) cover all control flow paths from where the heap

memory is allocated. Such an analysis is equivalent to solving

a k−SAT problem, which is NP-hard with the input size

k > 2 (k represents the number of the branch conditions) [17].

This induces a very high time complexity in theory and may

greatly compromise the efficiency and scalability in practice.

For instance, the most recent VFG technique, Pinpoint [18],

in spite of its leap in achieving scalability and precision, still

cannot complete the analysis in some large subjects in our

72

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00025

experiments.

To overcome this limitation, we designed an extension of

VFG, namely the use-flow graph (UFG), that encodes not just

the definition but also the use of the problem-relevant heap

objects. All use sites of the same heap object in UFG are

ordered according to the control flow, to check finite-state-

machine properties and to use polynomial-time graph search

methods to find possible memory leak paths. Path-sensitivity

is achieved in the second stage by using a dedicated constraint

solver to verify the feasibility of these candidate leak paths.

The verification process is efficient because, at this stage, the

number of paths is very small (only 21 on average) and we

use a customized constraint solver to further filter out “easy-

to-contradict” ones, leading to a further pruning of the paths.

Finally, we invoke a full SMT solver, such as Z3, for the

remaining candidates.

To evaluate the scalability and effectiveness of our proposed

technique, we implemented a tool, SMOKE, and applied it to

the SPEC2000 benchmark programs and seventeen well main-

tained open source projects. The experimental results have

demonstrated that SMOKE is highly efficient and effective, as it

could finish checking industrial-sized projects, up to 8MLoC,

in forty minutes with an overall false positive rate of 24.4%.

This is aligned with the common industrial requirements of

checking millions-of-LoC code [14], [15]. In the twenty-nine

mature and already extensively checked third-party benchmark

projects, SMOKE found thirty previously unknown memory

leaks, all confirmed by the original developers. One of the

reported leaks was even assigned with a CVE ID due to its

high severity.

We highlight our contributions as follows:

• We present the design and the implementation of SMOKE,

a staged approach for detecting memory leaks. SMOKE

is faster, more scalable, and more precise than the state-

of-the-art approaches.

• We present a novel sparse program representation, namely

the use-flow graph, which allows us to efficiently and ef-

fectively detect memory leaks. Using the use-flow graph,

we can model the memory leak detection problem as a P
problem rather than an NP-hard problem on value-flow

graph.

• We extensively evaluated SMOKE with standard bench-

marks and a broad spectrum of open source projects. The

experimental results demonstrate that SMOKE achieves

the speedup ranging from 5.2X to 22.8X, compared with

the state-of-the-art techniques.

This paper is organized as follows. We first present motivat-

ing examples in Section II. Section III describes our approach.

The implementation and evaluation are presented in Section

IV and Section V, respectively. Section VI discusses related

works and this paper is concluded in Section VII.

II. MOTIVATING EXAMPLES

In this section, we use three examples to illustrate the

limitations of the conventional Sparse Value-Flow Analysis

(SVFA) [8], [9] for detecting memory leaks, which gives a

better understanding of the key insights of our approach.

A. Reducing Complexity with Use-Flow Graph

Conventional SVFA techniques, such as FASTCHECK [8],

start with the sparse value-flow graphs (SVFG) as shown in

Figure 1(b) and Figure 2(b) for the code snippets in Figure

1(a) and Figure 2(a), respectively. In those SVFGs, each edge

represents a data-dependence relation, denoting the flow of

value. For example, the value-flow edge p@s2 → p@s7 in

Figure 1(b) implies that the allocated heap object pointed

to by p may be released at the statement s7 (we use si
to represent the statement at line i). In order to decide if

the memory is always released properly, FASTCHECK an-

notates the control-flow conditions on the value-flow edges

and relies on a constraint solver to solve the conditions.

For the example in Figure 1, we will solve the condition

Fleak = ¬((¬c1 ∧ ¬c2) ∨ (c1 ∧ ¬c2)). If Fleak is satisfiable,

there exists a path with no memory release operations, leading

to a memory-leak vulnerability. Note that, in general, solving

Fleak is a k−SAT problem [17] (k represents the number of

the branch conditions), which has the best time complexity

of O((2− 2
k+1)

n) [19] and is proved to be NP-hard [17] for

k > 2.

In SMOKE, we propose a new type of sparse program

representation, named use-flow graph (UFG), that still contains

the necessary control-flow information. Specifically, the UFG

encodes the definition and the use of problem-relevant heap

objects, which is similar to the sparseness feature in VFG.

In addition, it records the control flow order of uses of the

same heap object, which enables the checking of finite-state-

machine properties such as memory leaks. Figure 1(c) shows

the UFG of the code in Figure 1(a). The UFG slices away the

unnecessary program statements, such as the ones in Lines 3

and 4, and only encodes the necessary data dependence and

the control dependence. Meanwhile, UFG explicitly models

the life cycle of a value by creating an out-of-scope node (i.e.,

p@s8 in Figure 1(c)), which indicates that the heap object

pointed to by p is no longer referenced. A simple graph

traversal on the UFG shall discover that there exits a path

where the pointer p is never “freed”. Similarly, a simple graph

traversal on the UFG in Figure 2(c) will verify the absence

of memory leaks, because each path in the graph contains a

memory release operation. It is noteworthy that, using UFG,

we can obtain the same results with the same precision as that

of FASTCHECK, without collecting constraints for each path

and using a heavyweight constraint solver.

B. Regaining Path-Sensitivity via Staged Constraint Solving

Since most of the allocated memory spaces are managed

properly in common software, many cases of memory leaks

can be detected by graph traversals on the UFG with the flow-

sensitive precision. However, there still exists a handful of

cases that require capturing branch correlations, the impor-

tance of which is illustrated by Figure 3. This example is leak-

free because the memory is allocated and released under the

73

p@

(a) Program leaks on an early exit at line 6

(b) Sparse value-flow graph

(c) Use-flow graph

p@

p@

A
Leak
Path

p@ p@

1. void func() {
2. char *p = malloc();
3. if (…) // _1
4. printf();
5. if (…) // _2
6. return;
7. free(p);
8. }

Fig. 1. A memory leak example.

(b) Sparse value-flow graph

(c) Use-flow graph

p@

(a) A code snippet contains no memory leaks

p@p@

p@

p@

p@ p@

1. void func(bool y) {
2. char *p = malloc();
3. if (y) { // _1
4. …
5. free(p);
6. } else {
7. …
8. free(p);
9. }
10. }

Fig. 2. An example without any memory leaks.

same condition at Line 4 and Line 7, respectively. However,

FASTCHECK, as well as other existing SVFA techniques (e.g.,

SABER), will mistakenly report it as a memory leak due to

the negligence of the branch correlation. Such negligence is

caused by the large overhead of collecting path conditions

for many paths and the high complexity of conventional

constraint-solving methods.

To correctly identify that the code snippet is leak-free,

SMOKE employs a staged constraint solving process to verify

the feasibility of the candidate leak paths, such as the one

in Figure 3(c). First, we adopt a linear-time solver to filter

obvious infeasible paths. Most of the false warnings involving

branch correlations can be pruned at this stage. For the

remaining paths with complex path conditions, we adopt a

fully-featured SMT solver, such as Z3 [20], to check their

feasibility to achieve a low false positive rate.

III. MEMORY LEAK DETECTION

In order to speed up the memory leak detection without

losing the precision, we make two design decisions. First,

we use a lightweight finite-state analysis with a new sparse

program representation, the use-flow graph (Section III-A).

Second, we achieve the precision of path-sensitivity through a

dedicated constraint solver (Section III-B). In this section, we

assume that a program consists of functions in SSA form and

the pointer relations in the program have been resolved. We

(b) Sparse value-flow graph

(c) Use-flow graph(a) Branches at line 3 and
line 6 are correlated

p@

p@

p@

entry

A
Leak
Path

p@ p@1. void func(bool y) {
2. char *p = NULL;
3. if (y) // _1
4. p = malloc();
5. …
6. if (y) { // _2
7. free(p);
8. }
9. }

Fig. 3. A false memory leak due to an infeasible program path.

discuss how to satisfy the assumptions in our implementation

in the next section.

A. Finite State Analysis with Use Flow Graph

Our analysis is based on a new type of sparse program

representation, the use-flow graph (UFG). Compared to the

conventional sparse value-flow graph, UFGs have the fol-

lowing features for checking the finite-state properties of a

program:

• It models the whole life cycle of program variables by

encoding the property-related control flows, which we

referred to as use flows.

• It can be efficiently built in linear time with regard to the

program size.

A finite-state property of a program can be modeled as a

finite-state machine (FSM), which defines the valid sequences

of operations that can be performed upon an object.

Definition 1 (Finite-State Machine (FSM)). A finite-state

machine of a program property is a quintuple M = (Σ, S,

s0, δ, F), where

• Σ is a finite, non-empty set of classes of program points.

• S is a finite, non-empty set of the states of a program

object.

• s0 ∈ S is the initial state.

• δ is the state-transition function: δ : S × Σ �→ S.

δ((s1, P)) = s2 means that the state s1 of an object

can transit to the state s2 if the object goes through a

program point p ∈ P .

• F ⊆ S is the set of final states.

Example 1. As shown in Figure 4, we use an FSM to model

different states and state transitions of a heap object. There

are four states in the FSM: Allocated (A), Freed (F), Error

(E), and eXit (X). A is the initial state, and both E and X
are the final states. E indicates a safety violation of the finite-

state property, such as memory leak and double free, and X
denotes a normal exit. The state A will transit to the state F if

a newly-allocated heap object goes through a program point

where a “free” operation is performed. The state A will transit

to the state E (i.e., a memory leak issue) if a heap object goes

out of its life scope and can be no longer referenced.

74

Fig. 4. The finite-state machine for a heap object.

TABLE I
THE ANALYSIS STEPS IN EXAMPLE 3.

Step Vertex Before After

1 t@s2 - {A}
2 t@s3 {A} {A, F}
3 p@s10 {A} {A}
4 p@s11 {A} {F}
5 p@s12 {A}, {F} {A, F}
6 t@s6 {A, F} {F, E}
7 t@s7 {A, F}, {F} {A, F}
8 t@s9 {A, F} {E, X}

Given an FSM, we can build the sparse program represen-

tation, the use-flow graph, as follows.

Definition 2 (Use-Flow Graph (UFG)). The use-flow graph

of a program with regard to a given FSM is a directed graph

G = (V,E), where V is the set of vertices and E is the set

of edges:

• A vertex o@p ∈ V represents an object o at a program

point p. p is one of the following program points:

– p ∈ P where P ∈ Σ and δ(s, P) �= s. That is, p is

a program point that can cause a transition between

different states.

– p is where we call a function using o as an actual

parameter.

– p is the entry of a function where o is a formal

parameter.

– for each o@p′ ∈ V , p is the dominance frontier [21]

of p′. Intuitively, the dominance frontier is where the

states of the object o from different paths can be

merged.

• A directed edge (o1@p1, o2@p2) ∈ E if and only if

o1 and o2 represent the same object and there exists a

control flow path from p1 to p2. The path does not go

through any other program point p3 such that there exists

o3 representing the same object and o3@p3 ∈ V .

Given a program and the FSM of a property, the UFG can

be built efficiently according to Definition 2 in polynomial

time. The basic idea is to traverse the control flow graph of

each function and remove the statements at program points

that are irrelevant according to the FSM.

Example 2. Figure 5 illustrates an example of the UFG w.r.t.

the FSM in Figure 4. As a sparse representation, all irrelevant

program statements such as the ones at Lines 4 and 5 are not

modeled. We have the vertices t@s7 and p@s12 because they

t@

t@

t@

t@

p@

p@

p@

call

ret

t@s9

1. void foo() {
2. int *t = malloc(…);
3. bar(t);
4. int q = qux();
5. printf(“%d\n”, q);
6. if (…) free(t);
7. …
8. return;
9. }

10. void bar(int *p) {
11. if (…) free(p);
12. }

Fig. 5. An example to illustrate UFG construction. si represents the program
point at Line i.

are the dominance frontiers of t@s6 and p@s11, respectively.

At the program points s7 and s10, the states of the heap object

from different program paths can be merged. We have the

vertex t@s9 because this is the end point of the scope of the

heap object t.

Next, we describe how to detect memory leaks using

UFG. The basic idea is to check the state of a heap object

by traversing the UFG inter-procedurally. When traversing a

UFG, we use a set to keep track of the states at each vertex.

From the memory allocation site, the state A is added to

the set. The state set is propagated forward along the UFG

edges. When visiting a vertex corresponding to a transition of

the FSM, we transit a state accordingly. Otherwise, the states

remain unchanged. At each merge point, we merge the state

sets from different paths by the set union operation. Instead of

giving a complex formal representation of the algorithm, we

use the following example to illustrate the process.

Example 3. We use Table I to illustrate the steps of our state

analysis on the UFG in Figure 5. Each row of the table shows

the state set before and after a vertex. For example, in Steps

5 and 7, since the program points, s12 and s7, are dominance

frontiers where two state sets from different paths meet, we

use the set-union operation to merge the states. In Step 8, since

the program point s9 represents the end of the scope of the

heap object t, the state A transits to the state E and the state F
transits to the state X. Since the state E is obtained via an out-
of-scope operation, we report a memory-leak candidate. This

candidate will be verified path-sensitively as detailed later.

75

As illustrated by the above example, the UFG is traversed

inter-procedurally. The context-sensitivity is achieved via the

CFL-reachability method [22]. That is, we assign a string to

each state during the graph traversal to check the validity of

the context. When propagating a state along a call edge at

a call site cs, we append a left parenthesis (cs to the string.

When propagating a state back to a call site cs along a return

edge, we append a right parenthesis)cs to the string. A state

propagation is valid only if the string has matched parentheses.

We create a function summary for each function in a

demand-driven way. That is, when reaching a call site, we

check if the callee has a usable summary so that we do not

need to reanalyze the callee. Otherwise, we create a summary

after the callee is analyzed. In our approach, a summary is a

map between the input states of a parameter p and the states

of p at the end of a function. Therefore, it is unnecessary to

repeat the analysis of a function at different call sites if its

summary has been created.

Our analysis can be efficiently implemented using the RHS

algorithm [22]. Given an FSM M = (Σ, S, s0, δ, F) and its

corresponding UFG G = (V,E), the time complexity of the

algorithm is O(|V |2|S|(|E||S|+ |Calls||S|2)), where |Calls|
is the number of call sites in the program to check.

B. Staged Path-Sensitive Verification

1. void foo(bool c) {
2. int *t = malloc(…);
3. if (c)
4. free(t);
5. …
6. if (!c)
7. free(t);
8. …
9. }

A
Fa

lse
 L

ea
k

Pa
th t@

t@

t@

t@

t@

t@

{A}

{F}

{A, F}

{F, E}

{A}

{A, F}

{A, F}

{E, X}

Fig. 6. A false memory leak case whose path condition contains an apparent
contradiction c ∧ ¬c.

Some of the UFG paths generated by the aforementioned

state analysis are infeasible, which may result in false positives

as illustrated in Figure 6. To reduce the false positives, we

introduce a path-sensitive verification step where we collect

and solve path conditions of each memory-leak candidate

path. Although the path-sensitive verification is usually expen-

sive, our approach can be efficient because of two important

observations. First, we observe that the state analysis only

produces a handful of memory leak candidates that require

a path-sensitive verification. This is because most of the heap

memory spaces are managed safely in practice. Second, we

observe that the constraint in a path condition usually has

apparent contradictions such as a ∧ ¬a, as shown in the

example in Figure 6. The reason is that the programmers tend

to use direct contradictions to ensure some required logical

properties. Thus, we first adopt a linear-time solver to detect

apparent contradictions and to filter obviously infeasible paths.

For the remaining complex cases, we use a fully-featured SMT

solver, such as Z3 [20], to check the path feasibility. The basic

idea of the linear-time solver is similar to the one used in prior

study [18], and it continuously collects the sets of positive and

negative atomic constraints during the construction of a path

condition. An atomic constraint is a first-order logic formula

that does not contain any logic operator like ∧, ∨, and ¬. For

example, a < 2b and c are two atomic constraints in a < 2b∧c.
If a path condition has an atomic constraint a in both sets, this

path condition must contain a∧¬a and, thus, is unsatisfiable.

IV. IMPLEMENTATION

We have implemented SMOKE on top of the LLVM frame-

work [23], which takes an LLVM-Bitcode file as input, for

detecting C/C++ memory leaks.
Similar to some earlier work [8], [9], [24], we have some

unsound trade-offs to make the detector more practical. We

assume a path in UFG is safe if this path flows to a global

pointer or a container (e.g., std::list, std::vector). We do not

report memory leaks if a path ends in a call to exit(). If

a heap object is used as an argument of a library function

(i.e., a function that is not defined in the bitcode) on a path,

we conservatively treat it as an unknown value and stop

searching this path. We manually modeled some common

library functions, such as memcpy and memset, to improve

the precision and the recall. Similar to FASTCHECK [8],

we do not check the arithmetic operations on heap pointer,

free(p+ y) is simply treated as free(p).
Figure 7 illustrates the overview of our tool SMOKE.

SMOKE has four phases: Pre-Analyses, UFG Construction,

State Analysis and Path-Sensitive Verification. Here we only

discuss the details of the Pre-Analyses phase since other three

phases have already been discussed in Section III.
In the pre-analyses phase, we conduct several analyses

to compute the necessary information for later phases. We

first use a flow-sensitive and context-sensitive pointer analysis

similar to the one used in PINPOINT [18] to compute the

data dependence. Control dependence is computed on demand,

since not all functions in a program are related to memory leak

detection. We construct the control dependence by computing

the dominance frontier in the reverse graph of the control flow

graph [21]. To construct the call graph, we use the must-alias

results from the pointer analysis to resolve function pointers,

and adopt a class hierarchy analysis [25] to resolve virtual

function calls.
During the state analysis, we only consider the case when

the memory allocation operation is successful. For instance, if

a heap object is created in x = malloc(), we do not consider

the case when the test x == NULL is true. We use a light-

weight data-flow analysis to identify and ignore UFG edges

on which heap memories have not been successfully allocated.

V. EVALUATION

We evaluate the precision, the recall and the scalability of

SMOKE by comparing four well-known static analysis tools

76

Pointer
Analysis

UFG Construction State
Analysis

Path-Sensitive
Verification

Control Flow
Analysis

Data
Dependence

Control
Dependence

Memory
Leak
FSM Leak Path

Candidates
Memory
Leaks

SolverFunction Summary

UFG

Checker
Specification

Program IR Analysis ReportJoint
Path Conditions SAT/UNSATQuery

Fig. 7. System overview of SMOKE

that have memory leak detectors, from both academia and

industry. We compare to both SABER [9] and PINPOINT [18],

since they are the state-of-the-art SVFA based approaches with

the precision of flow-sensitivity and path-sensitivity, respec-

tively. We also choose CSA [1] and INFER [2], two prominent

and mature open-source tools from the industry. We plan to

evaluate other memory leak detection tools, such as SATURN

[3] and CALYSTO [26]. However, they are either publicly

unavailable or outdated for running in the environments we are

able to set up. To demonstrate the usefulness of our approach,

we also seek confirmations from original developers of the

subjects we use.

For each baseline, we only enable the memory leak detector,

since some tools may have other bug detectors. We set the

timeout to 2 hours, and configure each tool with its default

settings. All the experiments are performed on a moderate

computer running Ubuntu-16.04 with an Intel Core i5-6500

quad-core processor, and 64GB physical memory.

A. Subjects for Evaluation

We evaluate SMOKE, SABER, PINPOINT, CSA and INFER

using twenty-nine subjects, including the twelve benchmark

programs from standard SPEC CINT2000 [27], a commonly

used benchmark in the existing literature [9], and seventeen

well tested open-source projects. Table II shows the basic

information of the evaluation subjects. The size of these

subjects ranges from a few thousand of lines of code to nearly

eight million of lines of code. These projects are widely used

and well tested before release. Some of them are regularly

scanned by free or commercial static tools such as COVERITY

SAVE* and, thus, expected to have high code quality. We

divide the subjects into two categories: medium-sized projects

(including all SPEC CINT2000 programs and the projects with

code size less than 1MLoC) and large-sized projects with code

size larger than 1MLoC.

*https://scan.coverity.com/projects/

B. Scalability

To evaluate the scalability of each tool, we first check

whether it can successfully analyze the selected subjects under

our experimental environment (which is a typical desktop

computer rather than a powerful cluster) and within the time

budget (2 hours). As shown in Table II, SMOKE successfully

analyzes all twenty-nine projects in forty minutes, while others

fail to analyze some of the projects due to either crash (out-

of-memory or segmentation faults) or timeout. For example,

SABER, having the lowest success rate, fails on nine projects,

including two medium-sized and seven large-sized projects.

PINPOINT and CSA achieve the second-best success rate, but

still fail on four projects, which are mostly large-sized projects.

We further compare the time cost of analysis of all the

tools shown in Table II. On average, SMOKE achieves the

highest efficiency and is significantly (>5.2X faster than

SABER, >13.0X faster than PINPOINT, >12.4X faster than

CSA, >22.8X faster than INFER) faster than other tools.

SMOKE performs better than SABER and PINPOINT in all

subjects. Compared to CSA and INFER, SMOKE also performs

better on all the subjects, except one medium-sized project,

253.perlbmk.

Overall, the evaluation results show that, compared to other

tools, SMOKE achieves the highest scalability and scales to

millions of lines of code without requiring too much compu-

tation resource (using a desktop computer).

C. Precision

Following the common practice in the literature on memory

leak detection [8], [9], we manually check each error report

provided by all the tools, and then compare their false positive

rate (FP rate for short) to evaluate the precision. This process

may be subjective and introduce threats to the validity of the

FP results. Therefore, we ask three software engineers to cross-

validate the results and, meanwhile, seek confirmations from

the developers of the subjects. In addition, we release the

reports and data for inspection.†

†https://smokeml.github.io/data

77

TABLE II
ANALYSIS TIME COMPARISON

Table III shows the comparison results. On average, SMOKE

achieves an FP rate of 24.4%, which is the lowest one among

all the tools. As discussed in Section V-B, not all the subjects

can be successfully analyzed by all the tools. And the number

of false positives in the failure cases (e.g., SABER fails in the

project LAME) is counted as 0. For the medium-sized subject,

the small number of failure cases (only 2 by SABER, 1 by

CSA and INFER) allows a fair comparison of all the tools,

where SMOKE outperforms all other tools with a lowest FP

rate of 15.0%. The second best tool, PINPOINT, achieves a

much higher FP rate of 41.7%. INFER performs the worst,

with an FP rate of 87.5%. For the large-sized subjects, we

also observe SMOKE achieves the lowest FP rate, which is

consistent with the results in medium-sized subjects.

We further investigate why SMOKE can achieve the lowest

FP rate. SABER does not capture the path correlation. There-

fore, it cannot filter out cases with infeasible paths. Since

PINPOINT and CSA achieve the precision of path-sensitivity,

they report the smallest number of false positives. However,

they report much fewer true positive instances, incurring the

higher FP rate. INFER has the highest FP rate. A manual

check reveals that INFER generates a specification for each

analyzed function, and discards some of these specifications

for unknown reasons. The omitted specifications produce

imprecision in the whole program analysis. For example, a

typical false positive case happens when the specification for

a wrapper function of free (i.e., a library function to free heap

object) is discarded.

D. Recall

From the results in Table III, we observe that SMOKE

reports more memory leaks than other tools. SMOKE reports

158 real memory leaks while the other four tools report only

48 real memory leaks in total.

SABER and PINPOINT make significant precision trade-

offs to achieve efficiency. For instance, they limit the calling

depth for inter-procedural analysis and only report memory

leaks with six levels of function calls. They also stop analysis

whenever they find that a heap object is assigned to a global

variable on a path, even when the heap object obviously leaks

on another path. For example, Figure 8 shows a leak found

by SMOKE: A heap object allocated in get dll name flows to

dll name. It leaks when taking the true branch at line 207.

78

TABLE III
MEMORY LEAK RESULTS

SABER and PINPOINT cannot find this leak since it can flow

to a global variable (dll delayed or dll imports) when taking

the false branch at line 207.

CSA does not analyze function calls across different files.

INFER can only handle a small number of function calls across

different files. However, we observe that it is very common

that a memory leak relates to functions from different files. As

a result, CSA and INFER miss many real memory leaks. For

example, Figure 9 shows a memory leak in Bftpd reported by

SMOKE but not by CSA or INFER. A heap object allocated

in a source file cmd.c leaks in another file commands.c.

E. Contribution of the Analysis Stages

To better understand the effectiveness and the efficiency of

the staged analysis, we report the number of pruned candidates

and the time cost of each stage in Table IV. Note that, since

it is difficult to calculate the total number of the candidate

paths starting from each allocation sites (e.g., path explosion

due to loops), we estimate the lower bound of the total

number of candidates using the number of allocation sites.

Location:import.c:277

195. /* add a dll to the list of imports */
196. void add_import_dll(const char *name, const char *filename)
197. {
198. DLLSPEC *spec;
199. char *dll_name = get_dll_name(name, filename);
200. struct import *imp = xmalloc(sizeof(*imp));
201.
202. memset(imp, 0, sizeof(*imp));
203.
204. if (filename) imp->full_name = xstrdup(filename);
205. else imp->full_name = find_library(name);
206.
207. if (!(spec = read_import_lib(imp)))
208. {
209. free_imports(imp);
210. return;
211. }
212.
213. imp->dll_name = spec->file_name ? spec->file_name : dll_name;
214. imp->c_name = make_c_identifier(imp->dll_name);
215.
216. if (is_delayed_import(dll_name))
217. list_add_tail(&dll_delayed, &imp->entry);
218. else
219. list_add_tail(&dll_imports, &imp->entry);
220. }

A memory is allocated and assigned to dll_name

Take the true
branch at line 207

dll_name is leaked

Fig. 8. A memory leak in Wine

99. appendpath(result, path2);
100. free(path2);
101. return result;
102. }

69. char *bftpd_cwd_mappath(char *path)
70. {
71. char *result = malloc(…);
72. char *path2;
73. char *tmp;
74. if (! result)
75. return NULL;
76. path2 = strdup(path);
77. if (! path2)

Location:cmd.c:71

Location:commands.c:1522

1543. free(philename);
1544. free(mapped);
1545. philename = NULL;
1546.}

1516. void command_rnto(char *newname)
1517. {
1518. char *mapped = bftpd_cwd_mappath(newname);
1519. if ((! mapped) || (! philename))
1520. {
1521. control_printf(SL_FAILURE, "451 Error:

Unable to rename file.");
1522. return;
1523. }

Fig. 9. A memory leak in Bftpd

In the first stage, SMOKE prunes 98.6% (1− 610/43, 282) of

the candidates, leaving twenty-one paths on average for each

subject to be checked further. In the second stage, SMOKE

further prunes 65.7% (1 − 209/610) of the candidates by

detecting infeasible paths. The above results indicate that both

79

TABLE IV
STATISTICS OF TWO ANALYSIS STAGES

of the stages are effective in improving the precision.

Table IV shows the time cost of the two stages. SMOKE

spends 94.6% of the time in the first phase and only 5.4% in

the second phase. The two-staged design significantly reduces

the cost for the path-sensitive analysis and, thus, achieves high

efficiency.

F. Detected Real Memory Leaks

To better understand the usefulness of SMOKE in practice,

we seek confirmations from the original developers of the

subjects. Since we can not flood them with all warnings,

we manually pre-screen the bug reports and choose only the

ones that are likely to have severe impacts. The majority

of the reports are for large and well-maintained projects

such as FFmpeg, Wine, Firefox, MySQL, Godot Engine
and Chrome V8. All thirty reports get confirmed by their

developers and result in many patches and bug fixes. This

result confirms the usefulness of our approach because those

projects are regularly scanned by free and commercial tools,

and SMOKE only takes 3 ∼ 40 minutes to analyze each project.

We release the confirmed memory leaks online‡.

Due to the high scalability of SMOKE, we can detect

the inter-procedural memory leaks in large projects without

consuming too much computing resources. Figure 10 shows

‡https://smokeml.github.io/list

Location: dom/media/encoder/VP8TrackEncoder.cpp:254
249. nsresult
250. VP8TrackEncoder::GetEncodedPartitions(…)
251. {
252. vpx_codec_iter_t iter = nullptr;
253. EncodedFrame::FrameType frameType =

EncodedFrame::VP8_P_FRAME;
254. nsTArray<uint8_t> frameData;

277. if (!frameData.IsEmpty()) {
278. // Copy the encoded data to aData.
279. EncodedFrame* videoData = new EncodedFrame();
280. videoData->SetFrameType(frameType);
281.
282. // Convert the timestamp and duration to Usecs.
283. CheckedInt64 timestamp = …;
284. if (!timestamp.isValid()) {
285. NS_ERROR("Microsecond timestamp overflow");
286. return NS_ERROR_DOM_MEDIA_OVERFLOW_ERR;
287. }
288. videoData->SetTimeStamp(…);
289.

to aDat

A memory is allocated and
assigned to videoData

{
Take the true

branch at line 284

videoData is leaked.

Fig. 10. A memory leak in Firefox

Location:SparseLU.h:445
429. const Index * outerIndexPtr;
430. if (isCompressed())
431. outerIndexPtr = new Index[mat.cols() + 1];
432. else
433. outerIndexPtr = mat.outerIndexPtr();
434.
435. for (Index i = 0; i < mat.cols(); i++) {
436. m_mat.outerIndexPtr()[…] = outerIndexPtr[i];
437. m_mat.innerNonZeroPtr()[…] = outerIndexPtr[i + 1]

- outerIndexPtr[i];
438. }
439. if (isCompressed()){
440. delete[] outerIndexPtr;
441. }

Fig. 11. A false positive report in Blender

a memory leak confirmed by the developers of Firefox,

a project of approximately eight million lines of code. In

this example, the memory space pointed-to by videoData is

allocated at Line 279 and leaks on an early return at Line 286

when timestamp.isValid() returns false. This case is not very

complicated. However, because of the complexity in the code

and the enormous project size, this memory leak has been

hidden for more than one year. Figure 9 shows a memory

leak that SMOKE found in Bftpd, a lightweight, flexible FTP

server widely used in desktops, servers, embedded devices,

and media centers. This vulnerability has been in the code

since 2005. It has survived for more than twelve years and has

impacted eighty-six versions altogether. We report this leak to

its developers and receive a confirmation and an appreciation

acknowledgment on its homepage.§ A remote attacker can

utilize this leak to launch denial-of-service attacks to the users

of Bftpd. Due to its high severity, a CVE ID (CVE-2017-

16892) is assigned.

80

G. Limitations

Our approach can be imprecise for several reasons. One

reason is the lack of library specifications. Figure 11 shows

a leak-free example simplified from a false positive report

in Blender. At Line 431, the program allocates an array

and stores it to the memory pointed-to by outerIndexPtr,

under the condition that isCompressed() returns true. At Line

440, the program “deletes” outerIndexPtr when another call

to isCompressed() returns true at Line 439. The function

isCompressed() is implemented in a library, and it returns the

same boolean value at both places. Hence, the two branches

are correlated. Unfortunately, we cannot statically determine

this branch correlation since we do not have the specification

of the library function. One way to mitigate this problem is to

manually or automatically provide specifications for libraries

when detecting infeasible paths.

Another reason is that we inherit the imprecision from the

lower-level program analyses such as the pointer analysis. The

pointer analysis may mistakenly identify two different heap

objects as aliases. Operations on one object of the alias pair

may cause state changes of another, which could result in

mutual interference and incorrect results.

There are still some types of infeasible paths that cannot

be identified by our approach. Such paths usually involve

complex arithmetic in branch conditions, complicate data

dependence or deep inter-procedural effects. Including more

control and data dependence in the path constraints can help

to mitigate this limitation, at the price of being less efficient.

VI. RELATED WORK

In this section, we survey the related approaches in two

categories.

A. Static Memory Leak Detection

SATURN [3] reduces the memory leak detection problem

to a boolean satisfiability problem and uses a SAT-solver

to find memory leaks. Facebook INFER [2] is based on bi-

abductive inference of separation logic that extends the Hoare

Logic by explicitly modeling the heap. CLOUSEAU [4], [5]

detects memory leaks based on a practical ownership model

of memory management. Orlovich and Rugina [6] proposed a

leak detection algorithm based on a reverse data-flow analysis

that assumes the presence of the leak first, followed by a

pruning method. SPARROW [7] detects memory leaks in C

programs based on abstract interpretation. Tools based on

symbolic execution such as the CSA [1], COVERITY SAVE

[28], and KLEE [29] are promising in practice. By treating

all external inputs as symbols and execute the program on

symbols, symbolic execution tools can explore program states

that are hard to reach for concrete executions. However,

symbolic execution tools do not scale to large programs due to

the path explosion problem and intensive uses of the constraint

solver. All of the above techniques are not sparse, which

§http://bftpd.sourceforge.net/news.html

analyze a lot of irrelevant program statements and, thus, suffer

from performance issues.

FASTCHECK [8], SABER [9], and PINPOINT [18] are mostly

related to our approach. They work on a sparse value flow

graph with guards annotated on the graph edges. As we

have discussed in this paper, when high precision is required,

VFG-based model of the memory leak problem [8], [9] is

the reason for the analysis to be not scalable. To achieve

scalability, FASTCHECK and SABER have to compromise the

path-sensitivity, leading to many false warnings. PINPOINT

improves the sparse value-flow analysis by building precise

data dependence in an efficient manner, but it does not provide

a better model for memory leak detection. In comparison,

we propose a FSM-based model that enables us to efficiently

detect memory leaks on UFG.

B. Dynamic Memory Leak Detection

Dynamic approaches [24], [30]–[36] detect memory leaks

by instrumenting and running a program. Some dynamic

approaches operate at the binary level, such as the memcheck

tool of VALGRIND [31], DR. MEMORY [30] and PURIFY [33].

These approaches track memory allocation and deallocation

during a program’s execution, and detect leaks by scanning the

program’s heap for memory blocks that no pointer points to.

INSURE++ [36] and ADDRESSSANITIZER [35] detect memory

leaks by inserting extra statements to the source code before

compiling the binary.

Unlike static approaches that have relatively high false

positive rate due to the abstraction of concrete program states,

dynamic approaches have few false positives because they

have access to the concrete program states at runtime. How-

ever, dynamic approaches can miss many real bugs because

they cannot cover all possible program behaviors with limited

number of test cases. Also, dynamic approaches are hard to be

applied in a production run, because running the instrumented

program usually causes unbearable runtime overhead.

VII. CONCLUSION

We have presented an approach to static memory leak

detection, which runs in a fast, scalable, and precise manner.

The key factor to make our technique fast is a staged analysis,

in which we first efficiently filter safe cases based on our new

program representation, i.e., use-flow graph, and then employ

a constraint solver to verify path feasibility only for a handful

of leak candidates. We implemented our technique as a tool,

called SMOKE, and evaluated it systematically. The evaluation

results demonstrate that SMOKE is promising as an industrial-

strength static memory-leak detector.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insight-

ful comments and Dr. Yulei Sui for his help on the

SABER implementation. This work was partially funded by

Hong Kong GRF16214515, GRF16230716, GRF16206517,

NSFC61628205 and ITS/215/16FP grants.

81

REFERENCES

[1] The LLVM Foundation, “Clang static analyzer,” https://clang-
analyzer.llvm.org/, 2018.

[2] Facebook, Inc., “Infer,” 2018. [Online]. Available: http://fbinfer.com/

[3] Y. Xie and A. Aiken, “Context-and path-sensitive memory leak detec-
tion,” in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5.
ACM, 2005, pp. 115–125.

[4] D. L. Heine and M. S. Lam, “Static detection of leaks in polymorphic
containers,” Proceeding of the 28th international conference on Software
engineering - ICSE ’06, p. 252, 2006.

[5] ——, “A practical flow-sensitive and context-sensitive C and C++
memory leak detector,” ACM SIGPLAN Notices, vol. 38, no. 5, p. 168,
2003.

[6] M. Orlovich and R. Rugina, “Memory Leak Analysis by Contradiction,”
Proceedings of International Static Analysis Symposium SAS06, 2006.

[7] Y. Jung, “Practical Memory Leak Detector Based on Parameterized Pro-
cedural Summaries,” in Proceedings of the 7th International Symposium
on Memory Management, 2008.

[8] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak
detection using guarded value-flow analysis,” in Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’07. New York, NY, USA: ACM,
2007, pp. 480–491. [Online]. Available: http://doi.acm.org.lib.ezproxy.
ust.hk/10.1145/1250734.1250789

[9] Y. Sui, D. Ye, and J. Xue, “Detecting memory leaks statically with
full-sparse value-flow analysis,” IEEE Transactions on Software Engi-
neering, vol. 40, no. 2, pp. 107–122, Feb 2014.

[10] Mozilla, “Mozilla bugzilla,” 2018. [Online]. Available: https://bugzilla.
mozilla.org/buglist.cgi?quicksearch=memory+leak

[11] Google, “Chromium bugs,” 2018. [Online]. Available: https://bugs.
chromium.org/p/chromium/issues/list?can=1&q=memory+leak

[12] “CVE List,” 2018. [Online]. Available: https://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=memory+leak

[13] S. Zacchiroli, “The debsources dataset: Two decades of debian source
code metadata,” in IEEE International Working Conference on Mining
Software Repositories, 2015.

[14] S. McPeak, C.-H. Gros, and M. K. Ramanathan, “Scalable and incremen-
tal software bug detection,” Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering - ESEC/FSE 2013, 2013.

[15] A. Bessey, D. Engler, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, and S. McPeak, “A few billion lines of code
later,” Communications of the ACM, vol. 53, no. 2, pp. 66–75, Feb 2010.

[16] B. Steffen, B. Steffen, J. Knoop, and O. Rüthing, “The value flow graph:
A program representation for optimal program transformations,” PRO-
CEEDINGS OF THE EUROPEAN SYMPOSIUM ON PROGRAMMING,
PAGES 389–405. SPRINGER-VERLAG LNCS 432, vol. 432, pp. 389–
405, 1990.

[17] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing,
ser. STOC ’71. New York, NY, USA: ACM, 1971, pp. 151–158.

[18] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:
Fast and precise sparse value flow analysis for million lines of code,” in
Proceedings of the ACM SIGPLAN 2018 Conference on Programming
Language Design and Implementation, ser. PLDI ’18. Philadelphia,
PA, USA: ACM, 2018.

[19] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg,
C. Papadimitriou, P. Raghavan, and U. Schöning, “A deterministic
(2-2/(k+1))n algorithm for k-sat based on local search,” Theoretical
Computer Science, vol. 289, no. 1, pp. 69 – 83, 2002.

[20] N. Bjorner and L. de Moura, “Z3: An efficient SMT solver,” Available
from:http://research.microsoft.com/projects/Z3, 2007.

[21] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” 1991.

[22] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ser. POPL ’95. New York, NY, USA: ACM, 1995, pp. 49–61.

[23] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization. IEEE Computer Society, 2004, p. 75.

[24] C. Jung, S. Lee, E. Raman, and S. Pande, “Automated memory leak
detection for production use,” Proceedings of the 36th International
Conference on Software Engineering, no. undefined, pp. 825–836, 2014.

[25] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis,” in ECOOP’95, 1995.

[26] R. DeLine and M. Fähndrich, Typestates for Objects. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 465–490.

[27] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the
new millennium,” Computer, 2000.

[28] “Coverity scan,” https://scan.coverity.com/projects/, 2018.
[29] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” Proceedings of the 8th USENIX conference on Operating
systems design and implementation, 2008.

[30] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” in Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, ser. CGO ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 213–223.

[31] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” 2007.

[32] J. Clause and A. Orso, “Leakpoint: pinpointing the causes of memory
leaks,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. ACM, 2010, pp. 515–524.

[33] R. Hastings and B. Joyce, “Purify: Fast Detection of Memory Leaks
and Access Errors,” in Proceedings of the Usenix Winter 1992 Technical
Conference, 1991.

[34] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak de-
tection using adaptive statistical profiling,” ACM SIGOPS Operating
Systems Review, 2004.

[35] K. Serebryany and D. Bruening, “AddressSanitizer: a fast address sanity
checker,” ATC, 2012.

[36] “Insure++,” 2018. [Online]. Available: http://www.parasoft.com/
products/insure

82

