
On the Importance of Program Representations in

Static Analysis

Xiao Xiao

Supervisor: Charles Zhang

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

January 28, 2013

Abstract

Static analysis is a set of automatic or semi-automatic techniques to gather the

semantic knowledge of a program without executing it. An important kind of seman-

tic knowledge is the control flow and data flow information, which characterizes the

instruction execution paths and the data generation/consumption paths, respectively.

The obtained information is encoded in various graphical data structures or in the

program itself directly for subsequent use. These data structures or instrumented pro-

grams are called program representations. In this survey, we first study four data

structures that can help us dissect the code structure and dig deep structural proper-

ties. Then, we discuss the popular representations used in contemporary compiler, the

single static assignment (SSA) form and its variants, which enable efficient program

analysis algorithms by exploiting the sparsity of the data flow problem. We believe our

surveyed knowledge can shed light to our future work.

1

1 Introduction

Software engineering and programming language research focuses on improving the pro-

grammers’ productivity and the program code efficiency, which significantly benefit from the

advances in the way of gathering the semantic knowledge of a program. Static analysis is a

category of techniques to explore a program without executing it. The main theme of static

analysis is to infer the behaviors of a program and answer the questions such as, which state-

ments must be executed after statement A? Which variables will be modified by statement

A? What is the relationship in value of the variables a and b? These questions are often

addressed by the control flow and data flow analysis, and of course, by many other methods,

which are out the scope of this survey. The control flow analysis characterizes how the code

is executed, such as computing the dominator tree of a procedure [1], testing the reducibility

of a program [44], computing the control dependencies for all the statements [32], computing

the single entry single exit regions of a procedure [25], etc. The data flow analysis estimates

the values of the variables, such as tracking the possible targets for pointers [18], computing

the def-use chains [1], detecting induction variables [47]. The collected semantic information

can provide vision for subsequent algorithms to comprehend and manipulate code.

In a code analysis tool such as compiler, static analysis algorithms are usually performed

one by one, where the subsequent algorithms require the outcome of the former algorithms

as input. By this reason, it is important to encode the analysis results of an algorithm in

some way for future use.

The encoded form of static analysis results is called program representation. Usually, we

either build additional graphical data structures to encode the analysis results, such as we

use the dominator tree to query the dominance information [1]. Or, we directly inject the

semantic information into the code and construct an intermediate representation (IR). Both

solutions have their advantages. Adding a new data structure for a piece of information

does not require the modification to the existing structures and algorithms, and most often,

it is easy to implement. In contrast, employing a new IR sometimes needs to change all

the algorithms that are built on the particular IR syntax. Moreover, it is hard to encode

rich information with succinct syntax. However, using a proper IR, the algorithms built on

can often be greatly simplified. For example, with SSA IR [12], a simple flow insensitive

points-to analysis can transparently obtain certain degree of flow sensitive precision [20].

2

In the case more than one tools are used to process the code, using IR to exchange the

information among these tools is a good choice, since these tools may be implemented by

different vendors, they cannot negotiate in advance to use the same data structure to encode

the same information.

1.1 Paper Organization

This survey is not a complete summary of the program representations developed in use

today. Instead, we selectively introduce several important representations, each of which

forms the basis for a wide spectrum of applications. In summary, we will examine the

following graphical data structures:

• Loop nesting forest, a data structure that represents the loops in a control flow graph

and the containment relation between them [33]. This structure can be used to perform

the elimination based data flow analysis [36], and also, it can be used to construct the

SSA IR [12] and sparse evaluation graph [10].

• DJ-graph, a data structure that combines dominator tree and control flow graph. It is

very useful in both exhaustive and incremental data flow analysis [41]. And recently,

it is applied to answer the liveness queries in a demand-driven way [13].

• Program structure tree, a hierarchical representation of program structure based on

single entry single exit (SESE) regions of control flow graph [25]. This decomposition of

program can be exploited to speed up data flow analysis in divide-and-conquer fashion

and compute data flow analysis in parallel.

• Program dependence graph, a graph that only encodes the control and data dependence

relations between the statements in the same procedure [14]. This is graph is intensively

used in software engineering tools, such as test case generation [17], slicing [24], and

code clone detection [15].

For the intermediate representations, we will study the single static assignment (SSA)

form and its variants. SSA encodes the def-use chain information into the code, hence, we

can quickly discover the definitions of a variable used by a statement without executing the

reaching definition analysis. Many well known compilers such as GCC, LLVM, and open64

3

use SSA as its primary IR for machine independent code optimization. SSA transparently

lends certain degree of flow sensitive precision to flow insensitive algorithms and exposes the

opportunity for sparse data flow analysis [29], many algorithms, such as pointer analysis [19],

greatly benefits from these features.

However, the original SSA does not consider the impact of the aliased pointers, the

interprocedural sides effects, the predicate expressions, and the chance to perform backward

data flow analysis sparsely, which limited the use of SSA in sophisticated analysis setting.

Fortunately, progress has been made to address these limitations. The aliasing SSA form

called Hashed SSA (HSSA) proposed by Chow et.al [11] models the def-use impacts of the

pointer dereference site. Calman et.al [8] and Livshits et.al [27] generalizes the HSSA to

track the interprocedural side effects. The single static information (SSI) form also considers

the variable use sites, other than the definition places, as the information sources. Hence, the

predicate information such as x == 2 can be used to enrich the subsequent analysis result.

All of these extensions greatly simplify the design and implementation of the algorithms that

need corresponding information.

2 Terminologies

We repeat the commonly used definitions for several important concepts here. A good

summary of the graph terminologies for PL research is given by Offner [30].

Definition 1 A control flow graph (CFG) G(V,E) is a directed graph. A node v ∈ V is

called basic block, which contains a sequence of statements that will be executed once the

first statement in the sequence is executed. An edge u→ v represents possible flow of control

from u to v. The graph contains two distinguished nodes: START has no predecessors and

it reaches every node. End has no successors and it is reachable from every node.

CFG is the simplest way to layout the program and encode the program execution flows.

Most of the time, CFG is the start of a static analysis algorithm. The abstract syntax

tree (AST) [1] is another common start abstraction of a program. However, AST does not

explicitly model the flow of control between statements, it emphasizes more on the syntax

structure of the source code. In contrast, the statements in a CFG are usually transformed

4

into triple code format [1], i.e. a statement involves at most three operands, which is suitable

for machine analysis rather than studying the programmer’s code style.

However, it is not obvious to discover any interesting results for the program execution

flow encoded in CFG. The primary methodology to study the CFG is using depth first search

(DFS). DFS, as well as the DFS decomposition of a graph by tree edges, forward edges,

back edges, and cross edges, are well defined concepts in graph theory text book [30]. In

addition, we define a family of dominance relations to characterize the execution flow:

Definition 2 A node or edge x is said to dominate node or edge y in a CFG if every

path from START to y includes x. We use x dom y to record the dominance relation.

If x 6= y, x strictly dominates y and this relation is recorded as x sdom y. Finally,

x might immediately dominate y if x sdom y and there is no other node z such that

x sdom z sdom y. We write x idom y to record the immediate dominance relation.

Definition 3 A node or edge x is said to postdominate node or edge y if every path from

y to END includes x.

Definition 4 A dominator tree is a graphical representation of the idom relations. There

is an edge x→ y in the tree iff x idom y.

Definition 5 The dominance frontier DF (x) of node x is the set of all nodes y such that x

dominates a predecessor of y but does not strictly dominate y.

We extend the definition of dominance frontier to a set S of nodes: DF (S) =
⋃

x∈S DF (x).

Then, we define the iterated dominance frontier IDF (S) for a set S of nodes as the limit

of the following sequence:

IDF (S) = DF (S)

IDF (S) = DF (S
⋃
IDF (S))

Based on the postdominate relation, we define a more involved but still a fundamental

concept, control dependence:

Definition 6 A node w is said to be control dependent on edge u→ v if:

1. w postdominates v;

2. if w 6= u, then w does not postdominate u.

5

Intuitively, control dependence means that if the execution flows along u→ v, the control

will eventually reach w.

The last fundamental view of the execution flow is loop. A loop is a strongly connected

component (SCC) [30]. A loop can interfere with another loop, resulting in nested loops. For

a well structured program, the program written without gotos, a loop is either contained

in or disjoint to another loop. This perfect situation is called reducible program, which is

defined as follows:

Definition 7 A program is reducible iff for every back edge x→ y in any DFS decompo-

sition, y dom x.

More properties of reducible graph other than its definition can be found in Hecht et.al’s

paper [22]. A loop in a reducible CFG is a group of nodes S that form a SCC. There is a

unique node x ∈ S that x dominates all other nodes in S. The node x is called loop header

and we use a tuple (S, x) to record a loop. The analysis of loops in irreducible graphs is

given in next section.

3 Graphical Representations

We present a set of data structures that would be very helpful for researchers to look

inside the code structure and design analysis algorithm.

3.1 Loop Nesting Forest

The loop nesting forest, informally, is a tree representation for the loop containment

relations. For two loops in a reducible program, as we learned, are either disjoint or nested.

However, two loops can be overlapped in a irreducible program. As shown in Figure 1, the

loop {u,w} and the loop {w, x} overlap at w. In such a CFG, the concepts outer loop

and inner loop are undefined. Therefore, we could draw many different loop nesting forests,

which identify 1, 2, 3 loops as shown in Figure 1.

Although we cannot give a precise definition of what is loop and how the loops are

nested in a general program, we can define a parametric framework to model all of the loop

definitions so far developed by different researchers [33]. The key is to consider a loop in a

6

Entry

w x

vu

End

(a)

u, v, w, x

w xvu

(b) u, v

w x

vu w, x

(c) u

w

x

u w

x

v

(d)

Figure 1: Illustration of different loop nesting forests. (a). A sample CFG. (b). Screedhar-

Gao-Lee forest. The loop headers are shown in the ellipse, none cycle members of the loop

are shown in the rectangle. (c). Steensgard’s forest. (d). Havlak’s forest.

graph G(V,E) to be not a set of vertices, but a pair (B,H) of non-empty sets of vertices B

and H, with H ⊆ B, where B is the body of the loop and H is the set of headers of the

loop. Thus, a loop is an element of 2V × 2V , where 2V denotes the powerset of V . A loop

nesting forest is a set of loops, i.e., a subset of 2V × 2V . We represent a loop nesting forest

as a pair (B,H), where B ⊆ 2V is the set of loop bodies, and H ∈ B → 2V is a function

that maps each loop body to the set consisting of its loop headers. Thus, (B,H) is an abuse

notation for the set {(B,H(B))|B ∈ B}.
Of course, not every (B,H) pair is a loop nesting forest, a valid forest should conform to

the following properties:

Definition 8 1. ∀B ∈ B, B is a non-trivial SCC;

2. Every non-trivial SCC X in the graph is covered by (B,H) for some B ∈ B;

3. The set of loops have the proper nesting property: ∀B1, B2 ∈ B, where B1 ∩B2 = ∅ or

B1 ⊆ B2 or B2 ⊆ B1;

4. A header of the loop is not dominated by any other vertex in the loop.

The parameter in the framework is the way to pick the loop headers. Suppose you have

a way to pick the headers, the loop nesting forest L can be generated as follows. We denote

the original CFG as G0. The first step is identifying all the maximal SCCs in G0 as the

outermost loops. Consider any SCC X, an edge from a vertex inside X to one of its headers

7

is referred to as a loopback edge of X. Then, we delete all the loopback edges from G0

and obtain G1. If G1 is not cycle free, we search the SCCs in G1 and delete the loopback

edges again, until we reach a acyclic graph Gi, with i ≥ 0.

The various published loop nesting forests are only different in the way of choosing

headers, and all of them can be derived from the framework above. The Steensgard’s forest

[42] picks all the entry vertices of a loop to be the headers. An entry vertex is a vertex

in a loop that has a predecessor outside the loop. The Havlak’s forest [21] each time picks

only one header from an SCC, which is the vertex having the least pre-order timestamp in

the DFS traversal of G. The last, Sreedhar-Gao-Lee’s forest [40], picks all the vertices that

are not dominated by other vertices in the same SCC as the headers. These forests for our

example are visualized in Figure 1, from pictures (b) to (d).

The loop nesting forest is useful because certain arbitrary problem instances (including

those on irreducible graphs) can be transformed into equivalent problem instances based on

acyclic graphs. We illustrate an application of computing dominator tree with loop nesting

forest. The dominator tree for a directed acyclic graph (DAG) is easy to compute due to

the following lemma:

Lemma 3.1 On a DAG, the immediate dominator of node w is the least common ancestor

of w’s predecessors on the dominator tree.

Therefore, we can process the vertices in topological order and maintain a dynamic

structure for querying the least common ancestor on tree [16]. This algorithm is described

by Ramalingam et.al [35].

The acyclic algorithm can be easily generalized to reducible cyclic graphs. The key is

the loopback edges in a reducible graph do not impact the dominance relations for any nodes.

Therefore, we remove the loopback edges and apply the acyclic algorithm, then we obtain a

dominator tree for reducible graph.

Extending the acyclic algorithm to irreducible graphs requires loop nesting forest, and,

suppose we use Steensgard’s. In an irreducible graph, the dominator tree for the graphs

before and after removing all the loopback edges are not identical. The reasons is a irreducible

loop has multiple entries. Thus, directly deleting all the loopback edges loses reachability

information. However, this information loss can be compensated by adding edges from every

pre-entry vertex of the loop to every header of the loop, where a pre-entry vertex is an vertex

8

Entry

w x

vu

End

(a)

w, x

xw

(b)

Entry

w x

vu

End

(c)

δ

Figure 2: Transformation that preserves the dominance relations.

outside loop but it has a successor in the loop. Formally, we transform every loop L from

top down in the loop nesting forest as follows:

V ′ = V ∪ {δL}

E′ = E − Loopback(L)⋃
{p→ δL | p ∈ PreEntries(L)}⋃
{δL → h | h ∈ H(L)}

In the formula above, Loopback(L) denotes the loopback edges in L, and the PreEntries(L)

denotes the pre-entry vertices for L. To prevent blowup in the number of newly added edges,

we create a hop node δL: all the pre-entry vertices connect to δL and it connects to all the

headers in L. A sample transformation is shown in Figure 2. Let us represent the graph G

after applying the transformation to all its loops to be Ψ(G), the set of nodes δL to be ∆L,

we can obtain the dominator tree of G with the following formula:

Theorem 3.1 DomTree(G) = DomTree(Ψ(G))−∆L

A more detailed analysis of this algorithm can be found in [33].

9

1

2

3

4

5

6

7

8

9

1

2

3

4 5

6

7

8

9

(a). a control flow graph (b). DJ graph

J-edge

D-edge

level 1

level 2

level 3

level 4

level 5

level 6

Figure 3: DJ graph.

3.2 DJ Graph

A DJ graph is just the dominator tree of a CFG augmented with join edges [39]. A

CFG edge is a join edge (J-edge) if it has no corresponding edge on the dominator tree. A

dominator tree edge is called a D-edge. The construction of DJ graph is only a matter of

constructing the dominator tree, which can be done in linear time.

A sample DJ graph is given in Figure 3. An interesting part of DJ graph is that it gives

a simple way to compute the dominance frontier set DF (x) for any vertex x: We first assign

each vertex in G a level label, which is the depth from root to that node on the dominator

tree. To compute DF (x), we simply visit all the vertices y in the subtree of x. For every

J-edge y → z, z ∈ DF (x) iff z.level ≤ x.level. For example, in Figure 3, we want to know

DF (7). There are two J-edges in the subtree of 7: 9→ 7 and 8→ 5. Both 7 and 5 have the

same level label with 7, hence, DF (7) = {5, 7}.
In fact, we can bottom-up traverse the dominator tree to compute the dominance frontiers

for all vertices in a simple manner. Specifically, DF (x) can be obtained with the following

recurrence formula:

DF (x) =
⋃

y∈subtree(x) {w | w ∈ DF (y) ∧ w.level ≤ x.level}⋃
{t|x J−→ t ∧ t.level ≤ x.level}

In the formula, x
J−→ t means the J-edge x → t. The recurrence works in O(n2) to

10

compute the dominance frontier for all vertices, however, we can compute the iterative

dominance frontier IDF (S) for a set of vertices S in O(n) time. This is because, although

a vertex z can appear in IDF (x), ∀x ∈ S, we only need to add z once to IDF (S) and

avoid the revisit of z multiple times. The pseudo-code of computing IDF (S) is given in

Algorithm 1 and it works as follows. First, we put all nodes of S in a container, which

supports insertion and return of the node with deepest level label in O(1) time. Then, we

repeatedly retrieve the deepest node from the container. For every retrieved vertex x, we

call the SearchIDF(x) procedure, which first visits the J-edges x
J−→ y of x and inserts y to

IDF (S) if x.level ≤ y.level. Meanwhile, if y is never processed by SearchIDF() before, we

put y into the container. For the D-edges x → t, if t is not processed by SearchIDF(), we

directly call SearchIDF(t) recursively. Because we only visit every vertex in G once and put

every candidate vertex to IDF (S) once, the total running time is O(|V |+ |E|).

Algorithm 1: IDFmain(S)

Input: S: the seed nodes for IDF computation

Output: IDF (S): the iterative dominance frontier for S

1 IDF = ∅;
2 foreach x ∈ S do

3 InsertNode (x);

4 visited(x) = false;

5 end

6 while x = GetDeepestNode () do

7 currentRoot = x;

8 visited(x) = true;

9 SearchIDF (x);

10 end

3.3 Program Structure Tree

The program structure tree (PST) is a hierarchical representation of the control structure

of a program [25]. A sample PST is given in Figure 4. Nodes in this tree represent single

entry single exit (SESE) regions of the program, while edges represent nesting of edges.

11

Algorithm 2: SearchIDF(x)

Input: x: a DJ graph node x

1 foreach node y of x’s successor do

2 if x→ y is a J-edge then

3 if y.level ≤ currentRoot.level then

4 IDF (S) = IDF (S) ∪ y;

5 if y /∈ S then

6 InsertNode (y);

7 end

8 end

9 else

10 if visited(y) == false then

11 visited(y) = true;

12 SearchIDF (y);

13 end

14 end

15 end

The SESE region is defined on the dominance and postdominance relations of edges, which

are general extension of dominance on nodes:

Definition 9 A SESE region in a graph G is an ordered edge pair (a, b) of distinct control

flow edges a and b where:

1. a dominates b;

2. b postdominates a;

3. Every cycle containing a also contains b and vice versa.

However, the above definition along cannot help us partition a program because, two

SESE regions can overlap but not always be nested or tandem. For example, (a, b) and (c, d)

regions can both be SESE regions and c is contained in (a, b). Complete enumeration of the

SESE regions is of no use. We need a hierarchical layout of the SESE regions similar to the

loop nesting forest. To address this problem, we require every SESE region recorded in PST

to be canonical:

12

start

c

h

d

e

i j

g

f

b

a
a

b c d e

hf g

i j

a. control flow graph with SESE regions b. program structure tree

Figure 4: The program structure tree.

Definition 10 A SESE region (a, b) is canonical if:

1. b dominates b′ for any SESE region (a, b′) and

2. a postdominates a′ for any SESE region (a′, b).

In another way, for every edge e in the CFG, the canonical SESE region associated to e

is the smallest region that uses e as entry or exit edge. Therefore, every edge only has one

chance to be an entry or exit edge for a SESE region, which eliminates the possibility we

enumerate two overlapped regions in the PST. The construction algorithm of PST is similar

to the Tarjan interval finding algorithm [44]. We do not repeat it here and interested readers

to refer to Johnson et.al’s original paper [25].

A first look at the definition of SESE region is strange. However, think about the CFG

itself, which is of course a SESE region. Therefore, PST is looking for self-similarity struc-

tures in the CFG. More specifically, PST can enhance the performance of program analysis

algorithms by exploiting the flow graph properties of global structure, local structure, and

sparsity:

1. Global structure: As we said, each SESE region is a control flow graph in its own right.

Therefore, any procedural analysis algorithm can be applied unchanged to each SESE region,

13

and the partial results can be combined using the PST to give the global result, resulting in

a divide-and-conquer fashion algorithm.

2. Local structure: Algorithms for processing irreducible procedure is always slower than

the reducible counterpart. However, irreducible procedures are rare and most of the places

in the irreducible procedures are reducible. PST lets us to localize the effect of irreducible

structure to several SESE regions. For reducible regions, we can apply reducible algorithms

directly, which avoids using the slow irreducible algorithms globally.

3. Sparsity: Many analysis algorithms only manipulate a small subset of SESE regions.

If the summarized transfer function for a SESE region is only an identity function w.r.t

a data flow analysis, such transparent region can be directly bypassed, resulting in quick

propagation of data flow facts. In fact, the sparse flow graph constructed in this fashion

is called quick propagation graph, which is denser but easier to construct than Choi et.al’s

sparse evaluation graph [34].

SSA construction is an application of PST that exploits the global structure and sparsity

properties of the problem. φ-function placement for a variable x can be solved completely

by analyzing only those regions that contain an assignment to x. More concretely, if a merge

node needs a φ-function for variable x, this merge node must be in the iterated dominance

frontier of some assignment to x in the same SESE region as the merge node. Therefore, we

only mark those SESE regions that contain assignments to x. Then, we perform any SSA

construction algorithm separately to these regions, the SSA representation for the whole

procedure is constructed.

3.4 Program Dependence Graph

The program dependence graph (PDG) is a combination of the control dependence

graph (CDG) and the data dependence graph (DDG) [14]. The DDG subgraph is exactly

the graphical representation of the def-use chains. The CDG subgraph, informally, answers

the question that under what branch conditions, a statement will be executed. Formally,

the CDG is a graphical representation of the control dependence relations defined in Section

2. A sample PDG is given in Figure 5, where the rounded rectangle represents a control

statement (e.g. if statement), the circle is a non-control statement, and the hexagon is a

region node.

The region node summarizes the set of control dependence relations for its children

14

Program Sums
1. read(n);
2. i = 1;
3. sum = 0;
4. while (i <= n) do
5. j = 1;
6. while (j <= i) do
7. sum = sum + j;
8. j = j + 1;

end
9. i = i + 1;

end
10. write(sum);
End Sums

start

R0

1 2 3 R1 10

4

R2

R3

5
9

6

R4

7 8

Figure 5: The program dependence graph. Solid arrow is control dependence, dotted arrow

is data dependence.

statements (the circles) of the region node. We call the circles under the same region node

control equivalent statements. Note that, the control equivalent statements may not be

consecutive in the program. For example, in Figure 5, the statements 5 and 9 are separated

by a while loop. However, they are placed under the same region node R2.

With the region nodes, it is clear that the CDG subgraph is another program structure

tree that partitions the program into components: the children of a region, both the normal

statements and region nodes, are threaded in originally program. Intuitively, these children

form a super basic block that executes only once, from the first statement to the last one.

For example, under the region R2, if we treat the inner while loop represented by R3 as a

super statement, the statements 5 – 9 are executed one by one from top down. The CDG

decomposition of program is very similar to the interval decomposition of program, which

is, therefore, very suitable for elimination based data flow analysis [36].

However, performing iterative data flow analysis on PDG is harder than on CFG because

15

the execution flow between two statements is lost 1. However, since PDG has a DDG

subgraph, performing sparse analysis for non-distributive data flow problems 2 on PDG is

easy. However, PDG is not suitable for the distributive problems because these problems

require the decompression of the sparse analysis result.

One feature of PDG is that it makes backward slicing very simple [45]: Slicing is as

easy as performing a backward reachability analysis on the PDG, walking along both the

control dependence and data dependence edges. An extension of PDG is the system de-

pendence graph (SDG) that integrates the interprocedural side-effects into consideration

[23]. Therefore, we can directly perform the interprocedural backward slicing with SDG.

4 Single Static Assignment Form and Its Usage

The Single Static Assignment (SSA) intermediate representation (IR) gains popularity in

recent years because, it greatly simplifies the design and improves the speed of many program

analysis algorithms. Transforming an arbitrary program to an SSA program has two steps:

The first is inserting φ-functions into proper positions in the program to ensure that every

use of a variable x has only one reaching definition. We call this property single reaching

definition. The second is renaming every assignment x = · · · to a new name xi = · · · and

changing · · · = x that uses xi to · · · = xi. The term ”static” means the we only give a new

name to a variable for every assignment statement but not for every possible value. For

example, whatever the value x would be after the assignment x = y + 2, we only give a new

name x1 to x and change the assignment to x1 = y + 2. This single name x1 represents all

possible values 3, 4, 5, · · · , for variable x in real execution.

Since every assignment introduces a new name to a variable, all the variables are refer-

ential transparent, i.e. we can locate a variable globally without name confusion. This

feature lets us easily disambiguate two expressions with different values and implements the

common subexpression removal optimization. For example, in the code of Table 1, we can

easily figure out the two appearances of x+ 1 expression compute different values. Because,

in SSA form, they are syntactically different.

1Solely from PDG, we do not know statement 5 is executed before statement 9 or not.
2Non-distributive data flow problem has monotone but non-distributive transfer functions, such as con-

stant propagation, points-to analysis.

16

x = 1

y = x+ 3

x = 2

y = x+ 2

x1 = 1

y1 = x1 + 3

x2 = 2

y2 = x2 + 2

Table 1: Original code fragment (left) and its SSA form (right).

The φ functions for a set S of definition statements are placed in the nodes IDF (S).

IDF can be computed by Cytron et.al’s algorithm [12] or the DJ graph based algorithm.

SSA constructed by filling every φ function is called minimal SSA. The term minimal

indicates that we insert least φ-functions into the program to ensure the single reaching

definition property. However, the minimal SSA also contains many useless phi-functions,

which define never used new variables. We can eliminate these dead phi-functions through

liveness analysis [12]. The minimal SSA after the dead phi removal is called pruned SSA.

Of course, other than first constructing minimal SSA, we can directly construct the pruned

SSA [10].

The third flavor, other than the minimal SSA and the pruned SSA, is the semi-pruned

SSA [6], which only eliminates the φ-function defined variables that are used wholly in the

same basic block with its definition. The amount of such local names is huge because compil-

ers often generate temporary names to hold intermediate steps in a non-trivial computation.

From the experiment we know that the semi-pruned SSA eliminates 80% dead φ-functions

of those removed by pruned SSA. Identifying the variables referenced across the basic block

boundary is simply a linear scan over the statements, which is more efficient and simpler

than implementing a liveness analysis.

The importance of SSA is that it enables efficient program analysis or greatly simplifies

the analysis algorithm design. Specifically, SSA provides the opportunity to perform sparse

data flow analysis. In the compiler backend, SSA can help achieve better register allocation.

Next, we introduce them respectively.

4.1 Sparse Data Flow Analysis

Sparse analysis is a data flow information compaction and analysis statements minimization

17

strategy [29]. Informally, for a variable x, sparse analysis only considers the definition and

use sites of x, and ignores analyzing other statements that do not influence the value of

x. Traditional data flow analysis associates information to pairs formed by a variable and

a program point. This results in inefficiency because the information bound to the same

variable at a set of different program points may be the same (those points do not change

the information). In this case, redundant information is stored and evaluated multiple times,

which is a waste of both space and time.

However, in SSA form, the data flow information for variable x in its live range is never

changed. This is because the live range for a x is those program points dominated by the

definition point of x, and, these points can only see this definition due to SSA semantics.

Therefore, there is no statement in the live range can change the information of x. Due to

this reason, we do not need to associate the information to variable and program point pair.

Instead, we only associate information to the variable and we decompress the information

for every program points when queried. This kind of redundancy removal in fact saves quite

a lot time and memory. For example, Hardekopf et.al observe 175x speedup for pointer

analysis [19].

0

1

2

4

3

5

Figure 6: Example of sparse pointer analysis.

Another nice feature of SSA based sparse

analysis is that flow insensitive analysis auto-

matically obtains certain degree of flow sensi-

tivity. It gains flow sensitivity because the in-

formation obtained at different definition sites

is kept separated. We say certain degree be-

cause the φ-function is place at the beginning

of a basic block, it merges information be-

fore the subsequent statements use it. For

the non-distributive data flow problem such

as constant propagation, merging before use

would degrade precision [28].

We use a pointer analysis to illustrate the

two features mentioned above. The code is

shown in Figure 6. The points-to information

of p1 at the points l3 and l5 is the same as l0,

because those places do not change the points-to value of p1. This is the same situation to

18

q1 at l2 and l4. Therefore, we only maintain points-to information for p1 and q1 at l0 and l1.

Since at l3, the only visible definition of variable p and q are p1 and q1, we can easily deduce

that p points-to a at l3 at query time.

The precision degeneration comes from the two φ functions. In pointer analysis, the φ

function merges the points-to information for its parameter variables. Therefore, p3 points

to a and c, q3 points to b and d. The assignment ∗p3 = ∗q3 becomes four assignments: a = b,

a = d, c = b, c = d. However, the assignments a = b and c = d are fake. In traditional data

flow analysis, we analyze the true and false branches separately and we will not suffer from

the spuriousness. Because, only p3 = c and q3 = b co-exist in the true branch, p3 = a and

q3 = d co-exist in the false branch. Of course, the reason for spuriousness in SSA is that the

transfer function of pointer analysis is non-distributive.

4.2 Register Allocation

Register allocation is a big topic that we only give a overview here. Interested readers can

read Pereira’s survey [31] for more details, which is also our major reference.

4.2.1 Traditional Register Allocation

Register allocation is the problem of mapping program variables to either machine registers

or memory addresses. Since the number of registers is limited, not all the variables can be

assigned to registers at any time. Therefore, resolving the live range interferences is the core

topic for a register allocator. Specifically, the collection of program points where a variable is

alive is called its live range. Two variables interfere if the intersection of their live ranges

is non-empty. In this case, we also say that their live ranges overlap. We can safely assign

two variables that do not interfere to the same register.

Due to the number limitation of registers, there may exist some program points, a reg-

ister value must be written back to the main memory and that register is assigned to other

variables to use. This operation is called spilling. Since memory store and load are expen-

sive, hence, a register allocator should minimize the spilled variables. A spilling is always

preceded by live range splitting, which divides the live ranges of variables by adding copies

to the program and renaming the variables. For example, if we try to split x at point P ,

we insert a copy x′ = x and rename all the subsequent use of x to x′. After the splitting,

spilling the original x becomes spilling the current version of x or x′, both require placing

19

less store/load statements. The inverse operation of live range splitting is coalescing, which

is used eliminate useless copies. Specifically, if two variables v1 and v2 do not interfere, and

they are related by a copy instruction v1 = v2, it is desirable that these variables should be

allocated to the same register.

The most used approach for register allocation is based on graph coloring. The first

step is building an interference graph. That is, given a program, its interference graph

G = (V,E) contains a vertex for each variable v . A undirected edge (u, v) is in E if u

and v do not interfere. Thus, the problem of assigning registers to variables can thus be

approximated by coloring the interference graph, where each color corresponds to a register.

The most cited graph coloring based approach is described by Chaitin [9]. This is an

iterative algorithm that performs graph coloring, spilling, and coalescing interchangeably,

until the interference graph is K-colorable, where K is the number of registers. Specifically,

this algorithm executes the following operations [7]:

Start Renumber Build Coalesce

Spill CostSimplifySpill Code

Select

K-colorable

End

Figure 7: Chaintin’s register allocator.

1. Renumber: discover live range information in the source program.

2. Build: build the interference graph.

3. Coalesce: merge the live ranges of non-interfering variables related by copy instruc-

tions.

4. Spill cost: estimate the spill cost of each live range. The cost is computed by

computing the number of loads and stores that would be required to spill the live range,

with each live range weighted by c × 10d, where c is the operation’s cost on the target

architecture and d is the instruction’s loop nesting depth.

20

5. Simplify: constructs an ordering of the nodes. It uses an stack and repeats the

following two steps until the graph is empty:

• If there exits a node x with degree less than K, choose x. Otherwise, choose a node x

with smallest estimated spill cost for spill. Mark x for spill later;

• Remove x and all its edges from the graph. Push x onto the stack.

6. Spill Code: spill the marked nodes. Each spilled live range is converted to a collection

of tiny ranges by inserting loads before uses and stores after definitions.

7. Select: assign colors to nodes.

Figure 7 gives a flowchart of Chaintin’s algorithm. This algorithm has to be iterative

because Chaintin shows that spill free register allocation is NP-Complete. However, if the

input program is not so general, perhaps we can have more efficient and effective register

allocation algorithm. Fortunately, the SSA program is one of such special form.

4.2.2 SSA based Register Allocation

The specialty of SSA program is that its interference graph is a chordal graph. A graph is

chordal if every cycle with four or more edges has a chord, that is, an edge which is not

part of the cycle but which connects two vertices on the cycle. You can say a chordal graph

is triangulated. Chordal graph is a kind of perfect graph, which can be colored optimally in

polynomial time. More concretely, coloring a chordal graph is in O(E + V) time.

Start Build

Color

Coalesce

Spill

K-colorable

End

Select

Figure 8: SSA based Chaintin’s register allocator.

Not only the graph coloring process is much faster, the large iteration cycle involving

spilling, coloring, and coalescing is also simplified. This is because we can determine the

minimal number of colors for coloring the chordal graph in linear time. Therefore, we spill

21

code until the graph is K-colorable. Then, we coalesce and color the spilled code, and back

translate the SSA program to original program. This process is depicted in Figure 8.

4.3 Translation Out of SSA

The φ-function is supported only by a few processors, hence, after the code optimization on

SSA, we should eliminate the φ-functions in order to generate the assembly code. The first

solution proposed in Cytron et.al’s seminal paper [12] is: A k-input φ-function at entrance

of a node X is replaced by k ordinary assignments, one at the end of each control flow

predecessor of X. Then, replacing the names x1, x2, · · · , xk to a single name x.

i0 = 1

i1 = Φ(i0, i2)
y0 = i1

i2 = i1 + 1

z0 = y0 + 6

i0 = 1

i1 = Φ(i0, i2)
i2 = i1 + 1

z0 = i1 + 6

i0 = 1
i1 = i0

i2 = i1 + 1
i1 = i2

z0 = i1 + 6

a. SSA program b. After copy folding c. Cytron’s naïve
destruction

Figure 9: The lost copy problem. In picture (c), z0 received wrong value.

Some of the inserted assignments are redundant, and part of them are removed by co-

alescing in register allocation. The most important problem is that this simple translation

algorithm is incorrect. Briggs et.al point out two subtle errors [6]. The two errors are called

lost copy problem and swap problem, which are illustrated in Figure 9 and Figure 10.

Although Briggs et.al give the remedy, their algorithm is very complex that includes

liveness analysis and a preorder walk over the dominator tree. More importantly, they do not

show their new algorithm is correct, they only say they cure the problems they encountered.

22

x0 = 1
y0 = 3

x1 = Φ(x0, x2)
y1 = Φ(y0, y2)

t0 = x1

x2 = y1

y2 = t0

a. SSA program

x0 = 1
y0 = 3

x1 = Φ(x0, y1)
y1 = Φ(y0, x1)

b. After copy folding

x0 = 1
y0 = 3
x1 = x0

y1 = y0

x1 = y1

y1 = x1

c. Cytron’s naïve
destruction

Figure 10: The swap problem. In picture (c), x1 = y1 = 3.

The first both simple and correct solution is given by Screedhar et.al [38]. Their core idea

is treating the translation out of SSA problem as a coalescing problem. The observation is

that replacing the names x1, x2, · · · , xn to a single name x is very similar to assigning the

register x to these names, in the context of register allocation. As we learned from the

register allocation chapter, two variables can be coalesced iff their live ranges are disjoint.

Reconsider the lost copy problem and the swap problem, the errors occur because the live

ranges of the parameters of the φ-function have non-empty intersection.

Knowing the reason of the naive algorithm, Screedhar et.al give a simple solution. Con-

sider a φ-function x0 = φ(x1, · · · , xn) placed at entry of a block B0: x0 takes the value of xi

if the control flow comes from the ith predecessor block of B0. If x0, · · · , xk can be given the

same name without changing semantics of the program, the φ-function can be eliminated.

When this property is true for all the φ-functions in the program, the SSA form is called

conventional (CSSA) [38]. The conventional property may be invalided after code optimiza-

tion, especially the copy folding and code motion. The naive solution introduced by Cytron

et.al only work correctly for the CSSA program. Screedhar et.al’s method tries to recover

the conventional property as follows:

1. It creates n+ 1 new variables a0, a1, · · · , an;

2. A copy ai = xi is placed at the end of Bi, the ith predecessor block of B0;

23

3. The φ-function x0 = φ(x1, · · · , xn) is replaced by a0 = φ(a1, · · · , an);

4. A copy x0 = a0 is placed at entry of the block B0 (after φ-functions).

Now, folding the variables a0, · · · , an can eliminate all the φ functions. Apparently, this

algorithm (Method I called by Screedhar et.al) is simple to implement. However, it introduces

many copies that may significantly slowdown the program. Method II is proposed to remove

some useless copies by coalescing the variables. Other than post-processing these copies that

already take many resources to construct, Method III inserts the copies in Step 2 of Method

I on-the-fly based on the live range interference information. Screedhar et.al conjecture that

the number of inserted copies in Method III is minimal [38]. However, Boissinot et.al figure

out Screedhar et.al’s Method III does not produce minimal copies and, Method III may not

work correctly for embeded software where branch instruction can define variables [5]. By

this reason, Boissinot et.al’s approach is built on Method I to guarantee the correctness, and

improve Method I in efficiency and effectiveness by:

1. Avoiding the interference graph and developing a lightweight query structure for

liveness checks;

2. Testing variable classes congruence in linear time rather than quadratic time;

3. Developing more general coalescing mechanism for more aggressive coalescing.

5 Extentions to SSA

During the development of SSA, a lot of SSA variants are introduced to extend the

capability of SSA. The most important extensions are aliasing annotations for handling

indirect memory side effects (HSSA), and the variable use annotations for enabling both

forward and backward sparse analysis. We will go through these extensions in this section.

5.1 HSSA: Resolving Aliasing Information

The original SSA is proposed for Fortran programs. Hence, it cannot handle aliased memory

access due to memory overlap such as the “union” structure in C and pointer induced aliasing.

We can treat the names representing overlap memory addresses, such as the fields members in

a union structure, as a large monolithic variable to take account the memory effects induced

by writing to these different names. For pointer based indirect access, one way is using SSA

24

only for top level variables, i.e., the variables that cannot be modified through pointers. The

produced IR is called partial SSA, which is adopted by LLVM compiler. Another way is

using pointer analysis to resolve the pointers, then we instrument the program with side

effects annotations before inserting φ-functions.

The most popular way to annotate the pointer induced side effects is developed by Chow

et.al [11]. They call it Hashed SSA (HSSA) form. HSSA distinguishes the pointer induced

scalar variable definition as MayDef and annotates its side effects with χ-function. The

semantics of χ is that it potentially defines a variable, which means the reaching definition

of the potentially defined variable should be preserved. For example, a statement ∗p = 3

where p points to variable a is annotated as a = χ(a). The annotation is put immediately

after the statement ∗p = 3. For an indirectly use of a variable such as x = ∗q, where q points

to b, an annotation µ(b) is placed immediately before the statement to describe the MayUse

information. The χ and µ functions can also be used to annotate the interprocedural side

effects at the callsites in the same way.

The heap variable can be processed similarly as the scalar variable. In Chow et.al’s origi-

nal paper, it defines the concept virtual variable, which is a representative conceptual variable

of a group of heap variables. The virtual variable has the same aliasing effects as the its

group members, which means, every indirect write to a group member, the algorithm anno-

tates the write effects to its virtual variable. Therefore, we can recognize the virtual variable

as to aggregate the indirect effects of its members. The use of virtual variable of course

degrades the precision of the subsequent algorithms based on HSSA. But simultaneously, it

greatly reduces the number of annotations.

After the annotation, the program can be processed by standard SSA transformation

algorithm without loss of information. However, the resulting SSA program may be terribly

inefficient because the explosion of the χ-functions and the chain reactions to the φ-functions

blow up. To reduce the number of new variable versions created, Chow et.al introduce the

zero version variable to represent a set of variables, similar to using the virtual variable

for a group of heap variables. Specifically, they first define the occurrences of variables in

the original program before conversion to SSA form real occurrences. Thus, the variable

occurrences in φ, µ, and χ are not real occurrences. Based on the real occurrence concept,

the zero versions are defined recursively as follows:

1. The left hand side of a χ is zero version if it has no real occurrence.

2. If an operand of a φ is zero version, the result of the φ is zero version if it has no real

25

a = 3

call func()

…
return

a1 = 3

μ(a1)
call func()
a2 = χ(a1)

a3 = Φ(a1, a2)
μ(a3)
return

a1 = 3

μ(a1)
call func()
a0 = χ(a1)

a0 = Φ(a1, a0)
μ(a0)
return

a. Original program b. SSA form c. SSA form with zero versions

Figure 11: Example of using zero versions.

occurrence.

From the definition we know, zero versioning characterizes versions with no real oc-

currences and their values are affected by aliased stores. A sample zero versioned SSA is

illustrated in Figure 11. After the zero versioning, Chow et.al also perform a global value

numbering (GVN) to identify equivalent memory expressions, hence they further compact

the SSA program. Due to the use of hashing in the GVN, the resulting SSA form is called

HSSA.

The application of HSSA form is broad, especially in the defects analysis field, such as

Memory leak detection [43] and security checking [27]. In modern design, zero versioning

and GVN optimizations usually are not performed, resulting least compactness but best

precision for subsequent use.

5.2 SSI: Splitting All Information Definition Points

SSA only splits the information generated by explicit assignments. However, variable use

can also be an information source. An example is the classical backward data flow analysis,

liveness analysis, the variable use sites are collected and propagated to determine the liveness

range of each variable. Another case is the predicate expression such as if (p > 0), which

implies the value range information (p > 0 and p ≤ 0) that can be used in analyzing

26

corresponding true and false branch code. The predicate information is very important for

path sensitive defect analysis such as array out of bounds checking [3]. Based on these

requirements, Ananian et.al develop the static single information (SSI) form [2].

Building SSI form involves adding pseudo assignments for a variable v:

1. φ: at control flow merges, exactly the SSA φ-function;

2. σ: at locations where control flow splits and at least one of the disjoint paths from

the split uses the value of v.

Constructing the SSI form is not as easy as placing the φ and σ functions independently.

Since they mutually interfere, a fixed point computation is required. Recently, the construc-

tion algorithm proposed by the originator of SSI, Ananian et.al [2], is proven to be wrong [4].

Fortunately, Singer gives a correct algorithm in his PhD thesis [37]. Singer’s algorithm to

place σ-functions is in the same shape as Cytron et.al’s algorithm to place the φ-functions:

It first computes the iterative post-dominance frontier (IPDF) set, seeded by the concerned

variable use sites. IPDF is a parallel concept to the iterative dominance frontier (IDF) men-

tioned in Section 2. Then, a σ-function is placed at each member of the IPDF set. The SSI

construction algorithm is simply iteratively placing the σ and φ functions until convergence.

The resulting SSI form is called miniaml SSI.

However, from Singer’s empirical study we find that, σ functions will significantly increase

program size: the SSI form has 6 times more pseudo assignments as the corresponding SSA

form [37]. Because of its large size, the pruned or semi-pruned SSI from, which are defined

similarly to their SSA counterparts, are always constructed in practice. Of course, the key

point is to use liveness analysis to eliminate unnecessary pseudo assignments. Figure 12

shows the pruned SSA and corresponding pruned SSI forms.

SSI has two important features. The first is enabling sparse analysis for backward data

flow problems. This is unachievable by SSA and confirmed by a number of researchers

[10, 26, 46]. The reason is that the information of unanalyzed basic blocks cannot be recovered

in SSA form. We illustrate this problem through the very busy variable analysis. A variable

v is very busy at a program point P iff it is always subsequently used before killed. Let

us first consider the SSA program in Figure 12 (a), we want to know if x1 is very busy at

statement l1? From the sparse analysis, we can conclude that x1 is not very busy at its

definition point l0, because x2 kills x1 before use. However, from the information at l0, we

cannot decide the busy information at l1. This because the busy information is propagated

backwardly from l1 to l0, it is changed along the way from l1 to l0. As we discussed, sparsity

27

l0: x1 = input()
 t1 = input()
 if (x1 > 0)

l1: if (…)

a1 = x1 + 3a2 = x1 + 7

true

true false
x2 = process(t1)

a4 = x2 + 1

false

a5 = Φ(a3, a4)
x8 = Φ(x2, x6, x7)

z1 = a5 + t1

l0: x1 = input()
 t1 = input()
 if (x1 > 0)
(x4, x5) = σ(x1)

l1: if (…)
(x6, x7) = σ(x4)

a1 = x7 + 3a2 = x6 + 7

true

true false

x2 = process(t1)
a4 = x2 + 1

false

a5 = Φ(a3, a4)
x8 = Φ(x2, x6, x7)

z1 = a5 + t1

a. Pruned SSA form b. Pruned SSI form

l2: a3 = Φ(a1, a2)
 buf[a3] = 234 l2: a3 = Φ(a1, a2)

 buf[a3] = 234

Figure 12: Example of pruned SSA and pruned SSI form. The φ-function for x8 is deleted

because it is no longer live after its definition.

is a compression strategy that the program points dominated by point P all have the same

information with P . However, in our case, l1 is dominated by l0 but l1 has different flow

information with l0, this is a violation of the sparsity requirement.

The second feature of SSI is it can integrate the predicate information into sparse analysis.

In Figure 12 (b), the predicate x1 < 4 yields the opportunity to obtain that a3 < 11 at

location l2, which in turn helps us check if the visit of array buf[a3] is out of boundary. If

the predicate is x1 == 0, we can even use it for constant propagation because now we know

a1 = 3 and a2 = 7. More importantly, this more powerful version constant propagation still

stays in sparse form.

Last, SSI again simplifies the register allocation algorithm, because the interference graph

build in SSI form is interval graph [4], a more restricted type of graph than chordal graph.

28

Based on interval graph, the maximum K-colorable subgraph problem can be solved in

polynomial time. Therefore, we can choose the least variables to spill and generate a K-

colorable graph, which is still a NP-Complete problem in chordal graph. The second benefit

is, with SSI, the linear scan register allocator never face to the lifetime holes problem. More

details about linear scan algorithm can be found in Pereira’s survey [31], which is out the

scope of this survey.

6 Conclusion

In this survey, we examine several important program representations both in graphical

form and linear form, which we believe, are very helpful for program analysis researchers.

Of course, we still uncover some useful representations here, but our survey is already com-

prehensive. We will keep updating this survey in the future.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers principles,

techniques, and tools. Addison-Wesley, Reading, MA, 1986.

[2] C. Scott Ananian and Martin Rinard. Static single information form. Technical report,

Master’s thesis, Massachussets Institute of Technology, 1999.

[3] Rastislav Bod́ık, Rajiv Gupta, and Vivek Sarkar. Abcd: eliminating array bounds checks

on demand. In Proceedings of the ACM SIGPLAN 2000 conference on Programming

language design and implementation, PLDI ’00, pages 321–333, New York, NY, USA,

2000. ACM.

[4] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. Ssi properties revis-

ited. ACM Trans. Embed. Comput. Syst., 11S(1):21:1–21:23, June 2012.

[5] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and

Christophe Guillon. Revisiting out-of-ssa translation for correctness, code quality and

efficiency. In Proceedings of the 7th annual IEEE/ACM International Symposium on

29

Code Generation and Optimization, CGO ’09, pages 114–125, Washington, DC, USA,

2009. IEEE Computer Society.

[6] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. Practical

improvements to the construction and destruction of static single assignment form.

SOFTWARE – PRACTICE AND EXPERIENCE, 1998.

[7] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring

register allocation. ACM Trans. Program. Lang. Syst., 16(3):428–455, May 1994.

[8] Silvian Calman and Jianwen Zhu. Increasing the scope and resolution of interprocedural

static single assignment. In Proceedings of the 16th International Symposium on Static

Analysis, SAS ’09, pages 154–170, Berlin, Heidelberg, 2009. Springer-Verlag.

[9] G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings of the

1982 SIGPLAN symposium on Compiler construction, SIGPLAN ’82, pages 98–105,

New York, NY, USA, 1982. ACM.

[10] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse

data flow evaluation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL ’91, pages 55–66, New York,

NY, USA, 1991. ACM.

[11] Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Effective

representation of aliases and indirect memory operations in ssa form. In Proceedings

of the 6th International Conference on Compiler Construction, CC ’96, pages 253–267,

London, UK, UK, 1996. Springer-Verlag.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control dependence

graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October 1991.

[13] Dibyendu Das, B. Dupont De Dinechin, and Ramakrishna Upadrasta. Efficient live-

ness computation using merge sets and dj-graphs. ACM Trans. Archit. Code Optim.,

8(4):27:1–27:18, January 2012.

30

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence

graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,

July 1987.

[15] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones.

In Proceedings of the 30th international conference on Software engineering, ICSE ’08,

pages 321–330, New York, NY, USA, 2008. ACM.

[16] Harold N. Gabow. Data structures for weighted matching and nearest common ances-

tors with linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete

algorithms, SODA ’90, pages 434–443, Philadelphia, PA, USA, 1990. Society for Indus-

trial and Applied Mathematics.

[17] Rajiv Gupta and Mary Lou Soffa. Employing static information in the generation of

test cases. Softw. Test., Verif. Reliab., 3(1):29–48, 1993.

[18] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate pointer

analysis for millions of lines of code. In Proceedings of the 2007 ACM SIGPLAN confer-

ence on Programming language design and implementation, PLDI ’07, pages 290–299,

New York, NY, USA, 2007. ACM.

[19] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In Proceed-

ings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, POPL ’09, pages 226–238, New York, NY, USA, 2009. ACM.

[20] Rebecca Hasti and Susan Horwitz. Using static single assignment form to improve flow-

insensitive pointer analysis. In Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, PLDI ’98, pages 97–105, New York,

NY, USA, 1998. ACM.

[21] Paul Havlak. Nesting of reducible and irreducible loops. ACM Trans. Program. Lang.

Syst., 19(4):557–567, July 1997.

[22] M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs. J. ACM,

21(3):367–375, July 1974.

31

[23] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

In Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design

and Implementation, PLDI ’88, pages 35–46, New York, NY, USA, 1988. ACM.

[24] Susan Horwitz and Thomas Reps. The use of program dependence graphs in software

engineering. In Proceedings of the 14th international conference on Software engineering,

ICSE ’92, pages 392–411, New York, NY, USA, 1992. ACM.

[25] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree:

computing control regions in linear time. In Proceedings of the ACM SIGPLAN 1994

conference on Programming language design and implementation, PLDI ’94, pages 171–

185, New York, NY, USA, 1994. ACM.

[26] Richard Johnson and Keshav Pingali. Dependence-based program analysis. In Pro-

ceedings of the ACM SIGPLAN 1993 conference on Programming language design and

implementation, PLDI ’93, pages 78–89, New York, NY, USA, 1993. ACM.

[27] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with path and context

sensitivity for bug detection in c programs. In Proceedings of the 9th European software

engineering conference held jointly with 11th ACM SIGSOFT international symposium

on Foundations of software engineering, ESEC/FSE-11, pages 317–326, New York, NY,

USA, 2003. ACM.

[28] Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical extensions to the

ifds algorithm. In Proceedings of the 19th joint European conference on Theory and Prac-

tice of Software, international conference on Compiler Construction, CC’10/ETAPS’10,

pages 124–144, Berlin, Heidelberg, 2010. Springer-Verlag.

[29] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analy-

sis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[30] Carl D. Offner. Notes on graph algorithms used in optimizing compilers. 2011.

[31] FMQ Pereira. a survey on register allocation. Technical report, UCLA, 2008.

[32] Keshav Pingali and Gianfranco Bilardi. Optimal control dependence computation and

the roman chariots problem. ACM Trans. Program. Lang. Syst., 19(3):462–491, May

1997.

32

[33] G. Ramalingam. On loops, dominators, and dominance frontier. In Proceedings of the

ACM SIGPLAN 2000 conference on Programming language design and implementation,

PLDI ’00, pages 233–241, New York, NY, USA, 2000. ACM.

[34] G. Ramalingam. On sparse evaluation representations. Theor. Comput. Sci., 277(1-

2):119–147, April 2002.

[35] G. Ramalingam and Thomas Reps. An incremental algorithm for maintaining the

dominator tree of a reducible flowgraph. In Proceedings of the 21st ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’94, pages 287–296,

New York, NY, USA, 1994. ACM.

[36] Barbara G. Ryder and Marvin C. Paull. Elimination algorithms for data flow analysis.

ACM Comput. Surv., 18(3):277–316, September 1986.

[37] Jeremy Singer. Static program analysis based on virtual register renaming. Technical

report, University of Cambridge, 2006.

[38] Vugranam C. Sreedhar, Roy Dz ching Ju, David M. Gillies, and Vatsa Santhanam.

Translating out of static single assignment form. In In Static Analysis Symposium,

Italy, pages 194–210. Springer Verlag, 1999.

[39] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing &phgr;-

nodes. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’95, pages 62–73, New York, NY, USA, 1995. ACM.

[40] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Identifying loops using dj

graphs. ACM Trans. Program. Lang. Syst., 18(6):649–658, November 1996.

[41] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. A new framework for

exhaustive and incremental data flow analysis using dj graphs. In Proceedings of the

ACM SIGPLAN 1996 conference on Programming language design and implementation,

PLDI ’96, pages 278–290, New York, NY, USA, 1996. ACM.

[42] Bjarne Steensgaard. Sequentializing program dependence graphs for irreducible pro-

grams. Technical report, 1993.

33

[43] Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection using full-sparse

value-flow analysis. In Proceedings of the 2012 International Symposium on Software

Testing and Analysis, ISSTA 2012, pages 254–264, New York, NY, USA, 2012. ACM.

[44] Robert Tarjan. Testing flow graph reducibility. In Proceedings of the fifth annual ACM

symposium on Theory of computing, STOC ’73, pages 96–107, New York, NY, USA,

1973. ACM.

[45] Frank Tip. A survey of program slicing techniques. Technical report, IBM T.J. Watson,

Amsterdam, The Netherlands, The Netherlands, 1994.

[46] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value dependence

graphs: representation without taxation. In Proceedings of the 21st ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’94, pages 297–310,

New York, NY, USA, 1994. ACM.

[47] Michael Wolfe. Beyond induction variables. In Proceedings of the ACM SIGPLAN

1992 conference on Programming language design and implementation, PLDI ’92, pages

162–174, New York, NY, USA, 1992. ACM.

34

	Introduction
	Paper Organization

	Terminologies
	Graphical Representations
	Loop Nesting Forest
	DJ Graph
	Program Structure Tree
	Program Dependence Graph

	Single Static Assignment Form and Its Usage
	Sparse Data Flow Analysis
	Register Allocation
	Traditional Register Allocation
	SSA based Register Allocation

	Translation Out of SSA

	Extentions to SSA
	HSSA: Resolving Aliasing Information
	SSI: Splitting All Information Definition Points

	Conclusion

