
Geometric Encoding: Forging the High Performance
Context Sensitive Points-to Analysis for Java

Xiao Xiao Charles Zhang
Computer Science and Engineering Department

The Hong Kong University of Science and Technology
{richardxx, charlesz}@cse.ust.hk

ABSTRACT
Context sensitive points-to analysis suffers from the scala-
bility problem. We present the geometric encoding to cap-
ture the redundancy in the points-to analysis. Compared to
BDD and EPA, the state of the art, the geometric encoding
is much more efficient in processing the encoded facts, es-
pecially for the high-order context sensitivity with the heap
cloning. We also developed two precision preserving tech-
niques, constraints distillation and 1-CFA SCC modeling, to
further improve the efficiency, in addition to the precision
performance trade-off scheme. We evaluate our points-to al-
gorithm with two variants of the geometric encoding, Geom
and HeapIns, on 15 widely cited Java benchmarks. The eval-
uation shows that the Geom based algorithm is 11x and 68x
faster than the worklist/BDD based 1-object-sensitive anal-
ysis in Paddle, and the speedup steeply goes up to 24x and
111x, if the HeapIns algorithm is used. Meanwhile, being
very efficient in time, the precision is still equal to and some-
time better than the 1-object-sensitive analysis.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis

General Terms
Algorithms, Languages, Performance

Keywords
Geometric, Encoding, Points-to, Context, Sensitive

1. INTRODUCTION
Points-to analysis determines, given a pointer p, the set of

heap allocation sites that p may point to. The recent studies
[18, 10, 16, 5, 20] focus on points-to analysis with context
sensitivity to improve the precision. Context is a static ab-
straction for distinguishing the different runtime invocations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

of the same function, typically represented by unique call-
strings [6]. The context-sensitive points-to analysis is com-
monly reasoned under the k-CFA (k ≥ 0) analysis framework
[14], where k is the length of the path ascending from any
given function on the call graph. Our focus in this paper
is to design a practical points-to analysis abstracted by the
full context sensitivity for both the pointer and the heap vari-
ables [11], where the term full means the k is the length of the
longest path in the call graph with the strongly-connected
components (SCCs) contracted. We make this decision be-
cause the full context sensitivity is considered as the most
non-scalable case1, and the corresponding technique can be
easily translated to other cases with smaller k.

Prior Work. The earlier work [3, 19] has developed
nearly all of the key treatments for handling context sen-
sitivity. However, these approaches are inefficient because
the points-to information is not efficiently stored and the
constraints are evaluated individually for each context.

Whaley et.al. [18] presented the first practical solution
that uses the cloning-based analysis, to achieve the full con-
text sensitivity on very large realistic Java programs. They
successfully used BDD to compress the enormous number of
context-sensitive points-to tuples and to evaluate the points-
to constraints in the compressed form. Acknowledged by
the authors themselves [17], the memory efficiency of BDD
is heavily influenced by the insertion order of the variables,
requiring lots of tuning work in practice. More importantly,
recent studies show that BDD is not powerful enough to
encode more than one context-sensitive variables simultane-
ously, as in the case of heap cloning [7]. Besides, Hardekopf
et.al. [4] reported that the use of BDD in Anderson’s algo-
rithm for C is around 2x slower than the sparse bitmap en-
coding. Bravenboer et.al. [1] even achieved 15x speedup on
average with the Doop engine, compared to the BDD based
context sensitive analyses in Paddle [6]. Based on these facts,
BDD is limited in achieving our design objective of offering
a practical analysis for both pointer and heap sensitivity.

An alternative approach for achieving full context sen-
sitivity is the use of procedure summary [9, 5, 20], which
analyzes every function separately with parameters. This
flexibility requires an additional effort for the parameters
instantiation and the computation of the escaped informa-
tion, a tradeoff not necessary for the whole program anal-
ysis. Among all the algorithms, Lattner et.al.’s work [5] is
quite scalable due to the use of Steensgard’s unification for
pointer assignments. Xu et.al.’s work [20] also employs the

1It is also in theory the most precise case for call-string based
context model, if the SCCs are treated well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00

188

unification, e.g., for the pointers appear at the call sites.
Additionally, Xu et.al. designed a compression technique
for eliminating redundancy in the traditional points-to rep-
resentation, to minimize the time and memory consumption.
They find that many points-to tuples share the same calling
context prefixes and, hence by removing them, two points-to
tuples can become identical2. Xu et.al. call the shared prefix
the equivalent context and design the context merging tech-
nique, EPA, to leverage the observation. Although merging
the equivalent contexts is an insightful idea, the compression
opportunity is not fully explored (Section 2.3). Moreover,
despite that the performance of EPA is significantly better
than BDD based Paddle [6], its absolute running time is
still unsatisfactory for the practical use. For instance, the
medium sized program jflex runs 535 seconds [20], which is
50x slower than ours.

Our Contribution. To address the shortcomings of both
the BDD and the summary based algorithms, we have de-
signed an non-BDD and the cloning based context sensitive
points-to analysis. Our algorithm is bootstrapped by An-
derson’s analysis, which helps us build the initial call graph.
The main algorithm makes use of three techniques. The
first is a new context encoding scheme called the Geometric
Encoding, which encodes the points-to and the pointer as-
signment relations as regular geometric figures. Compared
to EPA, the geometric encoding is simpler to implement and
has higher compression. It is also flexible for the perfor-
mance and the precision tuning. The second is a prepro-
cessing step called constraints distillation. In Java, most of
the constraints extracted for points-to analysis come from
the Java library. However, not all the library code affects
the points-to information in user’s code. By wiping out the
inconsequential library code prior to the constraints evalua-
tion, we improve the performance without any precision loss.
The third is a 1-CFA model for handling the recursive calls.
As shown by Lhoták [7], the major source of precision loss in
the full context sensitive analysis is the imprecise handling
of recursive calls, due to the fact that the Java program al-
ways has big SCCs (Section 4). We overcome the difficulty
by providing a novel 1-CFA model built on top of the exist-
ing k-CFA abstraction, which effectively avoids the precision
and performance degradation incurred by the large SCCs.

Organization. The paper is organized as follows. Sec-
tion 2 provides the details of geometric encoding and its
inference rules, and the 1-CFA model for SCCs. Section 3 in-
troduces our points-to algorithm along with the constraints
distillation technique. Finally, we exhibit our experimental
results in Section 4, discuss the related work in Section 5
and conclude our paper in Section 6.

2. GEOMETRIC ENCODING
Consider performing Anderson’s analysis on the sample

program in Figure 1(a) under the full context sensitivity
model for both the pointer and heap variables. As in Wha-
ley’s approach [18], we first locally number the contexts of
each function by the integers 1, 2 . . . N, where N is the num-
ber of acyclic paths from main to that function on the SCC-
condensed call graph shown in Figure 1(b). Our aim is to
conclude that each version of pointer list2 under the con-
texts 1, 2, 3 of the function work points to all versions of o35

2For example, (p, ζ1, o, ζ2) denotes that the pointer p under
context ζ1 points to the object o allocated under context ζ2.

in the contexts 4, 5, 6 of the function addList.
To achieve this, the conventional analysis requires to eval-

uate the constraint p = x (x returned by addList at Line 30)
six times, gList = p three times, and list2 = gList nine
times3. However, with the following two observations, this
computation can be dramatically simplified. First, the re-
turn of addList induces six copies of independent assignments
pi = xi, ∀i ∈ [1, 7), which means x under the ith context
only assigns to p under the ith context. Such 1-to-1
mapping can be geometrically interpreted as a line segment
using the context numbers of p and q as the coordinates.
Second, consider the returns from createNewList to init and
then to work, inducing the assignments gList = p (Line 21)
and list2 = gList (Line 10). Because gList is a global with
one context only, thereby any versions of p can be as-
signed to any versions of list2, written as list2j = pi,
∀i ∈ [4, 7), j ∈ [1, 4). This many-to-many mapping between
p and list2 can be interpreted as a bounded rectangle using
the context numbers of p and list2 as the coordinates.

By encoding the pointer assignments and points-to facts
geometrically, we can use the corresponding algebraic oper-
ations to evaluate a large number of constraints under dif-
ferent contexts simultaneously. In our example, since both
relations, x points-to o35 and x assigns-to p, form 1-to-1
mappings, the fusion of the these two mappings immediately
yields the fact that pi points to o35i for i ∈ [1, 6] (o35i stands
for the object o35 created under the ith context). Likewise,
the many-to-many mapping between variables p and list2
described earlier yields the fact that each versions of list2
under the context 1, 2, 3 points to all versions of o35 created
under the contexts 4, 5, 6. Computing these points-to facts
geometrically only evaluates the corresponding constraints
once independent of the number of contexts.

The discussion above refers to all the essential steps of ap-
plying the geometric encoding for points-to analysis: Num-
ber the contexts, encode the initial relations, reason the
points-to relations via the encoded assignments. Next, we
describe these steps in detail.

2.1 Contexts Naming
We first construct the context insensitive call graph Gi,

then add an artificial function, Super Main, to Gi as the
entry point. Super Main calls the main function, the
static class initializers, and other possible entry points for
Java programs. Since Gi may not be cycle free, we col-
lapse all the SCCs in Gi to build the reduced call graph Gc,
which is a condensed DAG of Gi. We then temporarily
modify the Non-SCC call edge X → Y to rep[X] → rep[Y]
if rep[X] 6= rep[Y], where rep[x] returns the identifier of the
SCC that x belongs to. Correspondingly, if rep[X] = rep[Y],
the edge X → Y is called the SCC call edge.

Next, we apply Algorithm 1 on Gc to locally number the
contexts for each function X by the integers 1, 2, . . . , N,
where N is called the context size, denoted by csize[X],
standing for the number of acyclic call paths on Gc from
Super Main to X. The term context bar describes all the
contexts of X in an interval form [1, csize[X]]. The context
mapping between two functions for a callsite X → Y is cap-
tured by callmap[X → Y] = offset, which maps any context
of X to a context of Y by adding offset to that context of

3Because list2 = gList has three context sensitive versions,
and for each context, gList points to all the three versions
of o35 under the contexts 4, 5, 6.

189

Figure 1: Sample source code and its call graph. This example is used throughout the paper.

X. For example, we have callmap[X → Y] = U , meaning
that for each context c ∈ [1, csize[X]] of X, we map it to the
context c′ of Y , where c′ = c+ U .

Algorithm 1 Context Naming(Gc: Reduced Call Graph)

0. ∀ function X, csize[X] = 0
1. csize[Super Main] = 1
2. We visit the nodes of Gc in topological order
3. for each node X in Gc

4. for each non-SCC call edge X → Y
5. callmap[X → Y] = csize[Y] + 1
6. csize[Y] = csize[Y] + csize[X]
7. for each none representative node X of SCC
8. csize[X] = csize[rep[X]]
9. for each SCC call edge X → Y

10. callmap[X → Y] = 1

Algorithm 1 visits all the functions in the topological order
and obtains the first context of the context mapping for each
call X → Y by adding one to csize[Y] (Line 5). We then
increase csize[Y] by csize[X], which determines the number
of contexts mapped from X to Y (Line 6). This way for
building the context mapping arranges the contexts induced
by X consecutively on Y , which is crucial for us to use the
simple regular shapes for encoding the mapping relations.
Moreover, we handle the SCC call edges in the 0-CFA form
(Line 7-10). This simple strategy not only affects the SCC
call edges, but also influences all of the calls to the functions
in the SCC from outside, making a large part of the code
context insensitive. We will generalize Algorithm 1 to handle
the SCC more precisely in Section 2.5.

Example. The result of applying Algorithm 1 to our
running example is given in Figure 1. The callmap content
is drawn on the call graph edges, where [1, 2) → [3, 4) of
the third call edge (a.k.a e3) from main to work stands for
callmap[e3] = 3.

2.2 Geometric Encoding System
Same to other encoding methodologies, we encode the pro-

gram facts extracted from the source code before points-to

analysis. We call these encoded facts initial encoding.

2.2.1 Constructing the Initial Encoding
Pointer Assignments. The initial encoding is built on

the canonical form of the program, in which it has only three
types of pointer assignments: local-to-local, local-to-global
and global-to-local. The assignment between two globals
can be reduced to an assignment to a local, followed by an
assignment to another global.

We represent the local-to-local assignment such as q = p
in function X by p ; q. The assignment has the seman-
tics that p under the ith context only assigns to q under the
ith context, written as pi ; qi, ∀i ∈ [1, csize[X]]. Using the
context numbers of p and q as the coordinates, all the points
(i, i) on a plane essentially form a diagonal segment. To en-
code this fact, a 5-tuple representation (p, q, 1, 1, csize[X]) is
provided to concisely name the assignments q1 = p1, q2 = p2,
. . . , qcsize[X] = pcsize[X]. This expression faithfully captures
the 1-to-1 mapping between p and q.

The function callmap computed by Algorithm 1 is lever-
aged if p and q, local to different functions, e.g., X and
Y , are involved in an inter-procedural assignment. In the
case of parameter passing via the function call X → Y , we
let K = callmap[X → Y], the context sensitive form of
the assignment p ; q is expressed as (p, q, 1,K, csize[X]).
Correspondingly, in the case of function return, the context
sensitive version of p; q is encoded as (p, q,K, 1, csize[X]).

The assignments with globals are more involved because
globals are modeled context insensitively. For instance, the
assignment g = p, where g is a global, means that all versions
of p assign to the singleton version of g. This is a many-to-
1 mapping and its geometric interpretation is a horizontal
segment. Conversely, the assignment p = g is a 1-to-many
mapping that represents a vertical segment. More sophisti-
cated case occurred in the example g = p followed by q = g
where q is another local. The relation between p and q is
all versions of p assign to all versions of q, which forms a
many-many mapping, figured as a rectangle.

We now define our symbols formally:

Definition 1. The geometric encoding is a five or six tu-

190

(V1, V2, I1, I1 + b, L) (V1, V2, b1, b3, b2 − b1, b4 − b3)

Figure 2: Illustration of the encoding tuples.

ple, in the form (V1, V2, x1, y1, L1, L2) (no L2 term if it is a
5-tuple), abbreviated as EV1/V2

. The first two terms (V1, V2)
form an interpreter tuple, stating the labels of the X and
Y axes. The following 4-tuple (x1, y1, L1, L2) is the geo-
metric extension, which describes the mapping relation
between V1 and V2.

We treat the horizontal and the vertical segments as two
special cases of rectangle. Hence, the geometric extension is
either a diagonal segment or a rectangle. Formally, we define
our encoding in the algebraic form as follows and show the
geometric interpretation in Figure 2:

Definition 2. The geometric extension describes a 2D
geometric figure, which states the mapping relation between
two variables. The two types of the geometric figures are:

The diagonal segment y = x + b. It indicates the 1-
to-1 mapping which constantly offsets by b from X values
to Y values in order. We encode this segment by a 5-tuple:
(V1, V2, I1, I1 + b, L), where [I1, I1 +L) is the range of X and
[I1 + b, I1 + b+ L) is the range of Y;

The rectangle bounded by four lines x = b1, x = b2,
y = b3, y = b4 where b1 < b2 and b3 < b4. It represents the
many-to-many mapping, i.e., every value of X are mapped to
multiple values of Y. We encode the rectangle by a 6-tuple:
(V1, V2, b1, b3, b2 − b1, b4 − b3), where [b1, b2) and [b3, b4) are
the ranges for the width and the height of the rectangle.

Points-to. Encoding the points-to facts is exactly the
same as encoding the assignments. We first name the new
expression (e.g. new Object) by an unique name o, then we
treat o as a local if o is created in a function, or a global if
created in a static initializer for a class. Next, we encode an
allocation p = o in the same way as encoding an assignment
(assume both p and o are local to function X), and obtain
the outcome (p, o, 1, 1, csize[X]), in which p is written as the
first term.

Pointer Dereference Assignments. The pointer deref-
erence or the complex constraints include both the load and
the store constraints that access the instance fields. For ex-
ample, q.f accesses the f field of the object pointed to by q.
The geometric extension of the complex constraints q.f = p
(or q = p.f) is exactly the geometric extension of its cor-
responding simple assignment q = p, because it is sufficient
for us to instantiate q.f (or p.f) with the points-to result of
q (or p) by the mapping relation between p and q.

Example. The initial encoding of our running example is
included in Figure 3(a), where the geometric extensions are
drawn on the arrows. Taking the assignment gList = p as

Figure 3: The graphic form of the final assignments
and the points-to solution of our sample code. We
render the paths that the objects o14 and o35 can go
through by dotted and solid arrowed lines.

an example, we encode it as (p, gList, 4,1, 3,1), meaning all
versions of p under the contexts [4, 4+3) are assigned to the
single version ([1,1 + 1)) of gList. During the analysis, the
complex constraints instantiation adds the edges connected
to o35.next and o14.next.

2.2.2 Reasoning with the Geometric Encoding
The assignment constraint is reasoned under the fusion

operator ◦: Given the geometric extensions of the relations
p assigns-to q and p points-to o, we compute the geometric
extension of the relation q points-to o. For example, we
have (p, o35, 1, 1, 6) and (p, gList, 4, 1, 3, 1), the fusion result
is (gList, o35, 1, 4, 1, 3). This is obtained in four steps. First,
we extract the context ranges of pointer p4 in the points-to
and assigns-to figures, which are [1, 7) and [4, 7). Second, we
intersect the ranges and obtain the common interval [4, 7).
We call this step clipping. Third, we compute the intervals of
gList and o respecting to the interval [4, 7) of p. In our case,
they are [1, 2) and [4, 7). Finally, we compute the mapping
relation between q and o, and we call this step expanding.
Since all pi (i ∈ [4, 7)) assign to the single copy of gList,
it is a many-many mapping hence encoded by a rectangle:
(gList, o35, 1, 4, 1, 3).

Instantiating the complex constraint can be performed in
the same way as evaluating the pointer assignment, repre-

4Since p appears in both tuples, it is called the agent pointer.

191

Points-to
A

ss
ig

n
s-

to
N

o
te

s If the figures on the < p, o > and < p, q > planes
have empty intersection on p, there is no figure
generated on the plane < q, o >.

Figure 4: Assignment Inferring Rules. For each pic-
ture, the figures on the planes < p, o > and < p, q >
are given as input, describing the p points-to o rela-
tion and the p assigns-to q relation. The generation
steps of the figure on the plane < q, o > are implic-
itly stated by the dashed lines, which stand for the
clipping and expanding operations.

sented by the operator •. For example, we instantiate the
constraint (tmp, tail.next, 1, 1, 3) against the points-to fact
(tail, o35, 1, 4, 3, 3). We also need four steps of calculation
discussed above, but this time the agent pointer is tail and
its intersected interval is [1, 4) in the clipping step. After
mapping the intersection interval to the variables tmp and
o35, we obtain (tmp, o35.next, 1, 4, 3, 3).

We visualize the inference rules for the pointer assign-
ments in Figure 45, and the application of these rules to our
discussed instances above are given in Figure 5. Each infer-
ence rule contains three mutually perpendicular planes, and
the input geometric figures are given in the planes < p, o >
and < p, q >. We deduce the figure on the plane < q, o > by
the clipping and expanding steps explained before, which are
rendered by the dashed lines. From Figure 4, we conclude
that the diagonal segment and the rectangle w.r.t the binary
operations ◦ and •, form two magma algebraic structures re-
spectively. This result is important in two folds. First, it
shows that the inherit difficulty of the geometric encoding
is quite low, because only two simple geometric figures are
involved. Second, the soundness of the inference rules can
be verified easily by manual calculation, thus, we omit the
proof for the following lemma:

5Because the complex constraints instantiation are very sim-
ilar, we thereby elude the details.

(a): (p, o35, 1, 1, 6) ◦ (p, gList, 4, 1, 3, 1)

(b): (tail, o35, 1, 4, 3, 3) • (tmp, tail.next, 1, 1, 3)

Figure 5: Exemplify the usage of the inference rules.

Lemma 2.1. The inference rules for ◦ and • are sound.

2.3 Characteristics of Geometric Encoding
The geometric encoding overall offers higher compression

capability and precision fidelity than the state-of-the-art non-
BDD based points-to analysis EPA [20]. Without the glob-
als, our encoding is as compact and precise as EPA. This
property can be demonstrated through an example of two
functions, X and Y , that share a lowest common ancestor
function Z on a SCC-condensed graph. If a pointer p in X
points to an object o created in Y , EPA represents the fact
by a 4-tuple (p, ξ1, o, ξ2), where the symbols ξ1 and ξ2 are
the call paths to X and Y descending from Z. In our rep-
resentation, (p, ξ1, o, ξ2) is encoded as (p, o, ip, io, csize[Z]),
denoting that the csize[Z] number of p from the context
ip points to the csize[Z] number of o from the context io.
These two encodings have no difference except the represen-
tation of the contexts, therefore, both encodings have the
same compression capability and precision fidelity.

However, since the EPA algorithm does not clone the ob-
jects o pointed to by the globals, it causes two problems.
First, it cannot compress those points-to facts related to o,
because o is treated context insensitively and no common
call string prefixes can be exploited. Second, as the conse-
quence of the context insensitivity, the precision is degraded.
Intuitively, consider our sample code in Figure 1(a), since
some versions of o35 are pointed to by gList, the EPA algo-
rithm directly makes o35 insensitive, resulting in r points-to
both o14 and o35. This is because tail and list1 are alias
under the EPA approach, for which our encoding correctly
concludes that they point to different versions of o35. There-
fore, in the presence of the globals, our encoding approach
is more compact and precise than EPA.

Another noteworthy characteristic of geometric encoding
is that the evaluations of all kinds of constraints are always
O(1). While BDD can also perform a group of assignments
and instantiations in one operation, the complexity varies
from O(1) to O(U2) with no guarantee, where U is the max-
imum context size of all the functions. The is because the
complexity of the relprod operation for computing the rela-
tional product of two BDDs is O(n1n2), where n1 and n2

are the number of nodes of the input BDDs given to relprod,
ranging from O(1) to O(U) (O(U) = O(2logU)).

2.4 The Heap Insensitive Encoding
The use of rectangles complicates the information repre-

sentation of the geometric encoding. A simpler design is
treating the many-to-many relation as the many-to-all rela-

192

Figure 6: The 1-CFA modeling of an SCC. A, . . . ,
E, f1 . . . fk are functions, and the segments under
which denote the context bars.

tion. The term all means all the contexts. For example, if we
have (p, o, 1, 3, 5, 7) and the context bar of o is [1, 11), we can
soundly rewrite this points-to relation as (p, o, 1, 1, 5, 10).
The benefit is that, since all the contexts of the interval
[1, 11) for o are used, the term “10” can be omitted. And
instead, we use digit 0 in the new expression (p, o, 1, 0, 5) as
a wildcard for all the contexts of o. This simplification can
be understood as making the object context insensitive. We
refer to this encoding as the HeapIns encoding.

The name HeapIns does not suggest the 1-to-1 and the
many-to-all relations form a magma. In fact, reasoning with
the HeapIns encoding also produces the all-to-many and the
all-to-all relations, in the case of complex constraints instan-
tiation and the assignment from a local to a global followed
to another local. However, the inference rules given in Sec-
tion 2.2.2 are also applicable, because all contexts is only a
special case of many contexts.

2.5 Recursive Calls Revisited
Due to the unbounded number of contexts incurred by

the SCCs, the full context sensitive analysis usually, includ-
ing our algorithm presented so far, apply a 0-CFA model by
contracting SCCs to single nodes and computing the con-
text insensitive results inside of the SCCs [18, 5, 20]. This
is problematic because the points-to facts for the variables
inside of these SCCs become imprecise, and the call edges
between the non-SCC and SCC functions further exacerbate
the degradation of the analysis quality by propagating the

Algorithm 2 Points-to Analysis()

0. Constraints distillation();
1. Build initial encoding();
2. Worklist ← pointers have points-to tuples
3. while Worklist 6= φ
4. pick a pointer p from Worklist;
5. Geometric merging()
6. for each newly added points-to relation Ep/o

7. for each complex constraint Ep/q.f

8. Ep/o.f = Instantiate(Ep/o, Ep/q.f)
9. add the edge Ep/o.f if it is uncovered

10. for each pointer assignment Ep/q

11. for each points-to relation Ep/o

12. Propagate(Ep/q, Ep/o)
13. put q into Worklist if Eq/o is uncovered
14. end while

imprecise results to the whole program.
Algorithm 1 produces a 0-CFA model because we restrict

all the members of the same SCC to have the same context
sizes, which precludes us from context sensitively treating
the call edges to the SCC members. We provide a remedy,
the blocking scheme, allows the SCC members to have differ-
ent context sizes. Consider the partial call graph in Figure
6(a), we obtain its 1-CFA model in Figure 6(b) as follows.
We still run Algorithm 1 first and suppose the functions A,
B, E and k others in the SCC all have m contexts, and
the function D outside the SCC has n contexts (n < m).
Second, for each function in the SCC, we re-calculate its
context size. Taking function C as an example, it has k + 3
incoming calls, therefore, we let csize[C] = (k + 2)×m+ n
and divide its corresponding context bar into k + 3 blocks,
where the first k + 2 blocks have m contexts and the last
one has n contexts. Third, we map the call A → C to the
first block, B → C to the second block, and so on. The final
step is mapping C to E, but it is not 1-to-1 any more since
csize[C] > csize[E] in our example. Our solution is, we
pick that unique block of E and map all the blocks of C to
it. This time, we build k + 3 mappings from C to E for the
k+3 blocks of C, in contrast to only one mapping for the call
C → E built in Algorithm 1. This treatment resembles to
the 1-CFA context abstraction, because the disambiguated
points-to information passed to C from its callers are merged
in E. This treatment also answers the question of how to
map the call A→ C to the first block of C, which is to map
all the blocks of A, if any, to the first block of C.

3. THE POINTS-TO ALGORITHM
Points-to Algorithm. The skeleton of our points-to al-

gorithm is given in Algorithm 2, which only replaces the in-
ference rules of the Anderson’s analysis with our new rules
given in Section 2.2.2. In summary, we first pick a pointer p
from the worklist (Line 4), then we merge the geometric ex-
tensions of the points-to and pointer assignments related to p
(discussed below). After which, we exploit the newly found
points-to facts of p to instantiate the complex constraints
(Lines 6-9). Finally, we use the assignment inference rules
(Figure 4) to propagate the points-to facts (Lines 10-13).

Our real implementation of Algorithm 2 employs the com-
mon acceleration techniques for Anderson’s analysis includ-
ing the difference propagation and the prioritized worklist

193

[12]. In addition, we use the approaches constraints distil-
lation (Line 0) and geometric merging (Line 5) to further
improve the performance, operated as follows.

Constraints Distillation. The prevalent use of libraries in
Java program inhibits the scaling of the points-to analysis.
This observation is similar to Rountev’s [13]: Most of the
library code does not affect the points-to information of the
pointers in user’s code. It is also similar to the demand
driven spirit [16] that not all code is needed for computing
the points-to information of a pointer. Therefore, we dis-
till the constraints before the points-to analysis in order to
reduce the computation effort without precision penalty.

Our approach can be more precise than Rountev’s [13] be-
cause we know the user’s program prior to the analysis. We
first identify the pointers of which the points-to information
is essential. The idea is, to obtain the points-to informa-
tion of q, we only need the points-to information of p or
o.f if they are assigned to q. We first mark all the pointers
appeared in the user classes, then identify all the essential
pointers by propagating marks on the converged assign-
ment graph after Anderson’s analysis. Next, we distill
the irrelevant constraints: q = p is irrelevant iff q is inessen-
tial, and q.f = p is irrelevant iff all the instance fields o.f
instantiated by p.f are inessential.

Geometric Merging. We currently employ the linked list
to manage the geometric extensions. Therefore, inserting
a new figure into the manager is fast, but the containment
testing queries (Line 9, 13) cannot be quickly answered due
to the large space of contexts and the sequential searching on
the linked list. To improve the performance, we sacrifice the
precision manually via the fractional parameters, δ1 and δ2,
to limit the number of geometric extensions every interpreter
tuple (V1, V2) owns 6. In Algorithm 2, immediately after
fetching a pointer, p, from the worklist, we check the
number of geometric extensions that every points-to tuple
(p, o) and flow edge (p, q) own. We merge all the extensions
into a single rectangle if (p, o) (or (p, q)) has more than δ1
(or δ2) geometric extensions, and at least one of which is
newly added to (p, o) (or (p, q)) in the vocabulary of differ-
ence propagation [12]. The merged geometric extension is
the bounding rectangle of all the shapes described by the
extensions before merging, as shown in Figure 7.

Correctness. We prove the termination of Algorithm 2
by contradiction. In the case of infinite geometric extensions
are generated, the geometric merging technique finally pro-
duces one rectangle covering the whole contexts plane for
every interpreter tuple. If this happens, the containment
testings in Line 9 and 13 always fail because we already
compute all the points-to/assigns-to information. Therefore,
worklist will finally be empty and the loop will exit, which
contradicts with our assumption. The conservativeness of
our algorithm is proved in the following theorem:

Theorem 3.1. Algorithm 2 is a safe points-to analysis.

Proof. Algorithm 2 consists of four isolated components.
The first is the inference rules, the soundness of which is
guaranteed by Lemma 2.1. The second is our context num-
bering and mapping model, especially the 1-CFA model for
the SCC. It is sound because the essence of the context sen-
sitivity is only a matter of building the mapping between
the instances of two functions at every callsite, no matter

6If we have an encoded points-to fact (p, o, 1, 1, 2), we say
(p, o) owns the extension (1, 1, 2).

Figure 7: Geometric Merging Illustration. Picture
(a) shows the input figures, and picture (b) outlines
the corresponding bounding rectangles.

which instances are chosen and how many instances we ab-
stractly created for each function. The third is the An-
derson’s analysis framework (using directional assignments,
analyzing only four types of constraints, etc.), the safety
of which is commonly accepted. The forth is the geomet-
ric merging strategy, its conservativeness is guaranteed by
two factors: 1). the bounding rectangle always contains all
the points-to/assigns-to information before merging; 2). any
points-to/assigns-to information used in Lines 9 and 13 to
filter the redundant geometric extensions has already been
propagated as highlighted in our geometric merging discus-
sion. Therefore, we never erroneously intercept any non-
propagated information.

4. EVALUATION
The goal of the experiment is to examine the performance

and precision characteristics of our algorithm. We imple-
ment our points-to algorithm with the geometric encoding
(Geom) and the simplified heap insensitive encoding (Heap-
Ins) in the Soot framework7, bootstrapped by SPARK [8].
For the purpose to evaluate the impact of the different treat-
ments to SCCs, we implement Geom-0 and Geom-1, stand-
ing for the 0-CFA and 1-CFA models for SCCs (Section
2.5) with the Geom encoding. In addition, we choose the
1-object-sensitive algorithm [10] implemented in Paddle [6]
as the representative of context sensitive analysis8, and col-
lect the performance data of both their worklist (1-obj-W)
and JavaBDD (1-obj-B) based implementations. Some of the
1-obj-B data are missing because the JavaBDD crashed for
unknown reasons. Besides the performance comparison, we
also assess the precision of our algorithm by the virtual call
resolution and the alias analysis, both are fundamental to
the high level program analyses.

Experimental Setting. We choose Soot version 2.4.0 as
our front-end, and use Sun JDK 1.3.1 20 for Soot as the
program analysis base library, while Soot itself is powered
by JRokit 28.1 running under the server mode and parame-
terized for minimum garbage collection latency. The exper-

7http://www.sable.mcgill.ca/soot/
8Both the authors of [7] and we consider it provides the best
tradeoffs between precision and analysis efficiency.

194

Table 1: Summary of the benchmarks.
Program #Contexts #Methods Max SCC

jetty 1.1 × 107 2464 853

jlex 2.6 × 107 2534 875

jasmin 1.5 × 107 2695 854

polyglot 1.1 × 107 2453 857

javacup 3.3 × 107 2757 904

jflex 3.9 × 1011 4081 951

soot 1.5 × 1011 4697 965

sablecc 1.0 × 1011 9070 1572

antlr 2.1 × 1011 3141 910

bloat 4.5 × 1010 5696 1847

ps 1.6 × 1010 5660 1419

pmd > 9.2 × 1018 3556 887

jython 3.1 × 1017 4231 1408

jedit 8.3 × 108 10266 4965

megamek 8.1 × 1012 14330 1635

iment is conducted on a 64-bit machine with a Intel Xeon
3.0G processor running Linux kernel 2.6.22. Since minimiz-
ing the time usage is our first priority, the minimum/maxi-
mum heap size are both set to 15GB in order to reduce the
JVM memory acquisition time. Our benchmark includes
the programs from the Ashes suite, the Dacapo suite (beta
20050224), and other commonly cited large Java applica-
tions. All the benchmark programs are characterized in Ta-
ble 1. Note that, in terms of the number of analyzed meth-
ods (column #Methods), our benchmark size is comparable
to the previous work [18, 15] with JDK 1.4.

Implementation. We choose 100 and 50 for the frac-
tional parameters δ1 and δ2 (Section 3), which exhibit a
good trade-off for performance and precision. To reduce the
precision loss, the geometric extensions are never merged for
the pointers that have complex constraints, and every allo-
cation site of StringBuffer is treated individually by setting
the Soot option merge-stringbuffer to be false. To avoid the
use of big integers, the contexts numbered beyond 263 are
merged as a single context, similar to Whaley’s approach
[18]. The user’s classes required by the constraints distil-
lation technique are judged by the package name. To be
conservative, we only treat the packages in the name spaces
of java, javax, sun and com.sun as the library code. This
assumption is proved by our manual examination.

4.1 Performance
The time and memory usage for all the evaluated algo-

rithms are collected in Table 3. The 1-object-sensitive anal-
ysis is running with on-the-fly call graph construction [6],
and the running time for HeapIns and Geom-1 exclude the
time of SPARK. HeapIns and Geom-1 take only several sec-
onds for the medium and small benchmarks, and 7 min-
utes for the largest one. In terms of the absolute running
time, our algorithms are more practical than the 1-object-
sensitive implementation in Paddle. Statistically, HeapIns
and Geom-1 are on average 23.9x (min: 1.8x, max: 165.8x)
and 11.6x (min: 1.1x, max: 67.8x) faster than 1-obj-W, and
the improvements sharply go up to 111.0x (min: 20.5x, max:
174.7x) and 68.3x (min: 13.0x, max: 112.1x), compared to
1-obj-B. To best of our knowledge, the magnitudes of these
speedups are rare in the points-to analysis literature.

The memory consumption is also an important factor for
measuring the scalability of the points-to algorithms. On av-
erage, our algorithms HeapIns and Geom-1 require 2.7x and
2.0x less memory than 1-obj-B and 9.6x and 6.7x less mem-

ory than 1-obj-W. Notably, we have 9 out of 15 benchmarks
manifest quite low memory usage, which even outperform
the BDD based implementation for roughly 3 times. This
improvement is significant considering that the most impor-
tant feature of BDD is memory efficiency.

Table 2: The preprocess time of CDT and the per-
formance of Geom-1 without CDT. The record 5.6
(1.08x) means, jetty needs 1.08x more time to ana-
lyze without CDT.

Program
Preprocess

Time(s)
Geom-1 Without CDT

Time(s) Mem(MB)
jetty 0.10 5.6 (1.08x) 157 (1.23x)
jlex 0.11 7.1 (1.08x) 172 (0.86x)

jasmin 0.11 6.0 (1.09x) 197 (1.28x)
polyglot 0.10 5.6 (1.06x) 155 (1.34x)
javacup 0.12 6.2 (1.09x) 284 (1.00x)

jflex 0.15 11.7 (1.15x) 527 (1.20x)
soot 0.22 20.6 (1.10x) 614 (1.18x)

sablecc 0.37 98.8 (1.41x) 2259 (1.38x)
antlr 0.13 12.5 (1.09x) 208 (1.28x)
bloat 0.27 134.8 (1.06x) 3415 (1.07x)

ps 0.25 103.1 (1.33x) 1880 (1.34x)
pmd 0.14 64.8 (1.39x) 2486 (1.36x)

jython 0.24 24.1 (1.04x) 625 (1.10x)
jedit 0.51 145.4 (1.39x) 4631 (1.33x)

megamek 0.84 1028.8 (2.55x) 12432 (1.16x)

The efficiency of our algorithms is partly contributed by
the constraints distillation technique (CDT). From the col-
umn #Constraints of Table 3, we find that CDT effectively
deletes 24.4% of the constraints extracted from SPARK. To
quantify the impact of those removed constraints, we rerun
Geom-1 without CDT and record the time and memory us-
age in Table 2. From the statistics, CDT reduces 17% on
both time and memory on average at the cost of less than
1 second preprocessing time. The time reduction for the
largest program megamek is higher than normal, because
the memory usage almost achieves the upper bound so that
the garbage collector is more frequently invoked.

We believe CDT can be more useful in the case that only
a small fraction of pointers need the refined points-to in-
formation (e.g. the pointers point to a certain objects in
Anderson’s analysis), in contrast to the whole program in
our experiment. For this reason, Table 2 signifies that the
main power of our algorithm comes from our new encoding
approach combined with the 1-CFA model for SCC, rather
than from CDT. Without the encoding, it is hard for us to
outperform the traditional points-to implementation such
as Paddle. Moreover, since our encoding efficiently repre-
sents the heap cloning, it also indirectly confirms Lhoták
and Hendren’s conjecture: Efficiently implementing a 1H-
object-sensitive analysis without BDD will require new im-
provements in the data structures and algorithms [7].

4.2 Precision
Virtual Call Resolution. One application of pointer

analysis is to build the context insensitive call graph (CICG).
A virtual call is solved iff we have only one callee for that
callsite, where the callees for a callsite are decided by the
context insensitive points-to result. Correspondingly, in the
context sensitive call graph (CSCG), the potential callee for
a callsite is decided by the context sensitive points-to result
of the base pointer. Since our algorithm is a k-CFA analysis
that has a huge number of contexts, genuinely building the

195

Table 3: Summary of the time and memory usage for all evaluated algorithms.
Program #Constraints Time (s) Memory (MB)

SPARK 1-obj-W 1-obj-B HeapIns Geom-1 SPARK 1-obj-W 1-obj-B HeapIns Geom-1

jetty 23447 (×1.44) 14.3 37.3 520.2 3.1 5.2 293 1486 460 99 115
jlex 26742 (×1.39) 10.8 44.8 550.5 3.8 6.6 299 1641 491 102 129

jasmin 27838 (×1.39) 11.8 43.3 584.5 4.6 5.5 343 1732 509 118 152
polyglot 23495 (×1.44) 15.5 37.9 524.2 3.0 5.3 298 1561 464 96 114
javacup 30279 (×1.35) 11.1 45.9 582.9 4.2 5.7 319 1792 500 220 292

jflex 41827 (×1.4) 19.5 95.3 1143.4 7.1 10.2 418 3928 738 241 444
soot 75209 (×1.2) 17.6 81.9 1226.3 12.9 18.7 410 2430 745 463 631

sablecc 117298(×1.4) 36.8 119.9 1526.7 42.1 70.1 714 3588 845 1027 1561
antlr 35626 (×1.3) 12.6 54.4 720.0 4.4 7.4 335 1990 559 135 162
bloat 95863 (×1.15) 20.8 251.0 2276.1 46.0 126.7 481 5535 858 1450 2989

ps 82477 (×1.35) 25.0 86.4 1003.7 49.0 77.5 517 3215 676 933 1462
pmd 36120 (×1.3) 14.1 65.1 731.0 16.1 45.9 352 2119 579 1193 1886

jython 52873 (×1.2) 17.5 150.9 1236.4 10.4 23.1 407 4139 710 242 631
jedit 119464 (×1.3) 43.0 7078.1 - 42.7 104.4 919 11487 - 1881 3617

megamek 207122 (×1.3) 77.0 14128.7 - 190.0 403.0 1799 9396 - 5807 10223

CSCG is not practical. Instead, we design a random testing
approach to evaluate the quality of the CSCG. The idea is,
for each unsolved callsite in the CICG, we test if we have
a better result considering the callsite base pointer context
sensitively. In our experiment, we randomly choose 1000
contexts of the base pointer (or choose all the contexts if
it has less than 1001 contexts, and normalize the result to
1000 contexts base), and count the number of contexts under
which the callsite is solved. The sampling size 1000 faithfully
approximates the CSCG, because our conclusion remains for
a larger sample size (e.g. 5000).

The result of virtual call resolution is given in Table 4.
Because different algorithms compute slightly different sets
of reachable non-library methods, we take the set obtained
by 1-obj-W as the baseline. In the CICG construction, 1-obj-
W is relatively better than our algorithms. The gap between
Geom-1 and 1-obj-W in the sablecc and bloat benchmarks are
notable, because they frequently employ the visitor design
pattern and the large number of visitor instances are passed
to a few number of pointers from different places9. There-
fore, Geom-1 often merges the vistor instances before pass-
ing to the followers so that the followed pointers get more
than expected objects and result in fewer number of call-
sites resolved. Enlarging the fractional parameters is a way
to handle this case. For example, if we let δ1 and δ2 equal
to 200 and 150 respectively, we can resolve 56 additional
virtual callsites than SPARK in the sablecc benchmark, but
meanwhile, the computing time is doubled.

Nevertheless, our algorithms show their strong potential
in precisely constructing the CSCG. From Table 4, our algo-
rithms outperform 1-obj-W on all benchmarks except pmd,
and the gap in some cases, e.g. jflex, jython and ps, are quite
significant. This is desired because the higher k in contexts
abstraction, the finer the points-to information under each
context. This is akin to mapping all the points in a 3D
space to a 2D space, then every grid unit in the 2D space
must have the same number or more points compared to
its corresponding grid units in the original 3D space. Back
to our problem domain, the points-to information scattered
in 3D space is the solution of Geom-1, while the 2D space
counterpart describes the 1-obj-W result.

HeapIns exhibits better precision in the CSCG construc-

9It is the feature of the visitor pattern: How to modify the
data is decided by the input visitors. Therefore, the callsites
base pointers are the limited several.

tion and in the cases sablecc and bloat of the CICG, com-
pared to Geom-1. This is because, the termed all relations
(e.g. many-to-all) make the number of geometric extensions
owned by each interpreter tuple grow slower, resulting in
the less frequent invocation of geometric merging and fi-
nally leading to less uncertainty in precision. But the Heap-
Ins encoding is a double-edged sword. In applications that
demand the heap sensitivity, HeapIns would perform worse
than Geom-1 in, for example, the alias analysis.

Alias Analysis. In our experiment, we leverage the widely
accepted all-pairs-alias methodology proposed in [2, 5] to as-
sess the quality of alias analysis. Precisely, we scan a user
function, and collect all the pointers p and instance fields o.f
accessed in the function, if the type of that pointer or field is
not a sub-class of java Exception. Then, we exhaustively enu-
merate two pointers p, q and intersect their points-to sets,
with different instances of the same object disambiguated
and constants ignored if possible.

The alias analysis result is presented in Figure 8. We
take the number of alias pairs in SPARK as the baseline,
and the alias analysis quality for each context sensitive al-
gorithm is characterized as the percentage of alias pairs pro-
duced by SPARK. Overall, the three algorithms 1-obj, Heap-
Ins and Geom-0 perform closely well: They respectively re-
duce 15.5%, 16.8% and 16.0% alias pairs made by SPARK.
However, the precision of Geom-1 is dramatically better, it
negates 21.2% alias pairs of SPARK. This is the achievement
of the heap cloning and 1-CFA model for SCCs. Moreover,
since our algorithms require much less computing time and
memory, this improvement is noteworthy and significant.

4.3 Impact Study of Recursive Calls
We have noticed the power of 1-CFA model for SCCs in

the alias analysis. In this section, we try to quantify the
influences of SCCs, i.e. how much precision we gain and
meanwhile how much extra time we need if any. To study
the precision, we measure the average context insensitive
points-to pairs per pointer (APP) or average var-points-to
[15] in user’s code. APP is a good estimation of how many
pointers are affected by the SCCs because it counts all the
pointers once and only once. However, APP is not a good
predictor of the precision gain for the client applications
evaluated previously. For example, Geom-0 performs closely
well to Geom-1 in the call graph construction, because most
of the user functions involved in the SCCs are the overloaded
versions of toString and printStackTrace etc., which are ir-

196

Table 4: Virtual Call Resolution. CICG reports the number of virtual callsites resolved in context insensitive
call graph, and the rests show the relative numbers to the SPARK column. CSCG reports the percentage of
additional virtual callsites resolved in context sensitive call graph.

Benchmark Total CICG CSCG (%)
SPARK 1-obj-W HeapIns Geom-0 Geom-1 1-obj-W HeapIns Geom-0 Geom-1

jetty 281 267 +0 +0 +0 +0 0 0 0 0
jlex 772 771 +0 +0 +0 +0 0 0 0 0

jasmin 947 933 +0 +0 +0 +0 13.5 14.2 4.2 14.3
polyglot 233 232 +0 +0 +0 +0 0 0 0 0
javacup 2023 1978 +0 +0 +0 +0 1.7 8.9 7.8 8.9

jflex 2580 2566 +0 +0 +0 +0 0.0 56.8 53.6 52.5
soot 5723 5384 +0 +1 +1 +1 16.7 39.0 44.7 39.0

sablecc 3953 3648 +55 +53 +16 +16 26.4 44.5 36.0 36.1
antlr 4419 4032 +1 +1 +1 +1 1.1 3.0 2.9 3.0
bloat 12479 11868 +27 +21 +8 +11 17.3 34.0 46.1 33.6

ps 2338 2032 +3 +1 +3 +3 0.3 9.9 9.8 9.9
pmd 1985 1975 +0 +0 +0 +0 26.7 13.0 15.2 14.1

jython 5963 5652 +1 +1 +1 +1 19.3 55.4 30.2 54.9
jedit 11136 10774 +3 +1 +1 +1 9.8 37.1 49.7 36.6

megamek 31632 30605 +90 +1 +90 +90 24.5 32.8 23.2 26.1

Figure 8: Alias analysis. Each bar stands for the
percentage of alias pairs of that computed by SPARK.

relevant to the virtual callsites.
Table 5 collects our experimental data. We observe that,

Geom-1 improves the APP metric of Geom-0 on all bench-
marks. On average, the reduction is 37%; but it is dramatic
in the cases jetty, polyglot and antlr, all of which exhibit more
than 77% reduction. The reduction is roughly estimable by
the Max SCC metric in Table 1. This is because that, the

Table 5: Comparison of the 0-CFA and 1-CFA model
for recursive calls. The data in bold are those larger
than the corresponding Geom-1 results.

Program Time(s) Mem(MB) Avg. Points-to Pairs
Geom-0 Geom-1

jetty 37.4 1500 31.5 7.2
jlex 38.5 1511 18.1 9.9

jasmin 32.7 1450 33.8 25.3
polyglot 33.6 1410 35.7 7.4
javacup 14 278 99.7 79.3

jflex 29.3 582 107.1 66.1
soot 37 665 62.8 47.1

sablecc 131.8 1908 46.1 27.6
antlr 13.3 260 38.3 6.8
bloat 188.5 2912 139.4 126.2

ps 74.9 1459 149.4 141.0
pmd 8.0 464 27.6 14.4

jython 41.8 907 72.0 44.1
jedit 131.5 2645 68.7 54.0

megamek 589.3 8565 99.0 95.0

more user functions are affected by the SCCs, the higher pre-
cision we gain. The time usage is nearly constantly reduced
and, on average, Geom-0 takes 2.9x more computing time.
This is desirable because less points-to relations lead to less
propagation rounds of matched facts [15]. But, meanwhile,
as pinpointed by Smaragdakis et.al [15], Geom-1 will be less
scalable when imprecision will occur anyway (e.g., through
spurious assignments, flow insensitivity, geometric merging
and blocking scheme) in some cases (e.g., pmd).

Predicting the memory increment of Geom-0 over Geom-
1 is harder because it is influenced by two opposing forces.
One is the increase of the spurious points-to facts, and the
other is the decrease of the geometric figures owned by each
interpreter tuple due to geometric merging. Both forces
cause the computing time to increase, but they have oppo-
site effects for the memory usage and we cannot tell which
force has the upper hand for an arbitrary program. For ex-
ample, the first force prevails in the first four benchmarks,
but the second force wins in the last two. In some cases
where the 1-CFA model requires more memory, it only re-
quires 22% more. In the cases where the first force prevails,
the memory reduction is 86%, which is more significant.

5. RELATED WORK
Points-to analysis is a well studied subject of a large body

197

of work. We choose to discuss the most related and recent
ones in the category of designing or engineering an extremely
fast yet still precise points-to analysis. One of them, bd-
dbddb, is a highly flexible engine designed by Whaley et
al., aimed for prototyping a range of program analysis algo-
rithms [18]. The points-to algorithm shown in bddbddb is
the first scalable full context sensitive analysis. Compared
to our work, bddbddb lacks the support for heap cloning and
1-CFA model of SCCs, therefore, as pointed out by Lhoták
[7], the precision of bddbddb is only comparable to the 1-
callsite analysis. We cannot directly compare our algorithm
with bddbddb, because their compiler models the program
in a different way from Soot [1]. But as shown by Lhoták
[7], the Paddle’s version of Whaley’s algorithm is slower than
the 1-object-sensitive analysis, which is an evidence to show
our performance superiority over bddbddb.

Doop [1] implements a range of points-to analyses in declar-
ative language with rich features (e.g. declarative on-the-
fly call graph construction) and high performance. Simi-
lar to our work, Doop’s high performance is also obtained
from non-BDD based constraints evaluation. However, it’s
points-to and pointer assignments information is explicitly
stored without compaction. Therefore, Doop is limited to
support k-CFA analysis with larger k. It is interesting to
compare with Doop in future if we could access to its com-
mercial Datalog engine.

The EPA algorithm [20] presents an interesting way to
compress the points-to information by merging the equiva-
lent contexts that yield a set of points-to tuples in the same
structure. Our geometric encoding can be seen as a simpler
and more compact interpretation of their core idea with the
extension to handling the globals more precisely. In fact, the
EPA algorithm has a sophisticated implementation that we
did not manage to successfully port it in our experimental
setting. Therefore, the comparison with EPA is provisionally
absent in this paper. But our algorithm does not compute
the escaped objects, instantiate and merge the symbolic ob-
jects, and remove the context information for the objects
pointed to by global variables, thus, we expect our algo-
rithm to be much faster. Of course, a fair comparison is
needed to prove our hypothesis.

6. CONCLUSION AND FUTURE WORK
In this paper, we present an efficient and precise context

sensitive points-to analysis with heap cloning, based on our
simple and compact geometric encoding. Our new algorithm
has excellent performance, which is 68x faster than the BDD
based 1-object-sensitive analysis, meanwhile their precision
is similar in the call graph construction and we are better
in the alias analysis. Our future work will incorporate the
on-the-fly call graph construction, and experiment our en-
coding for the object-sensitivity and the callsite and object
combined abstractions [15], to see if the geometric encod-
ing is a powerful backbone for these practical models. We
have faith that, all the techniques (geometric encoding, con-
straints distillation and 1-CFA model for SCCs) proposed
in this paper make important contributions to the practical
full context sensitive points-to analysis.

7. ACKNOWLEDGEMENTS
We sincerely thank the anonymous ISSTA reviewers es-

pecially our shepherd for their insightful feedback. This re-

search is supported by RGC GRF grants 622208 and 622909.

8. REFERENCES
[1] M. Bravenboer and Y. Smaragdakis. Strictly

declarative specification of sophisticated points-to
analyses. In OOPSLA ’09. ACM.

[2] M. Das, B. Liblit, M. Fähndrich, and J. Rehof.
Estimating the impact of scalable pointer analysis on
optimization. In SAS ’01. Springer.

[3] M. Emami, R. Ghiya, and L. J. Hendren.
Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In PLDI ’94. ACM.

[4] B. Hardekopf and C. Lin. The ant and the
grasshopper: fast and accurate pointer analysis for
millions of lines of code. In PLDI ’07. ACM.

[5] C. Lattner, A. Lenharth, and V. Adve. Making
context-sensitive points-to analysis with heap cloning
practical for the real world. PLDI ’07.

[6] O. Lhoták. Program analysis using binary decision
diagrams. PhD thesis, Montreal, Canada.

[7] O. Lhoták and L. Hendren. Evaluating the benefits of
context-sensitive points-to analysis using a bdd-based
implementation. ACM TOSEM, 2008.

[8] O. Lhoták and H. Laurie. Scaling java points-to
analysis using spark. volume 2622. Springer.

[9] D. Liang and M. J. Harrold. Efficient computation of
parameterized pointer information for interprocedural
analyses. In SAS ’01.

[10] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for java. ACM TOSEM.

[11] E. M. Nystrom, H. seok Kim, and W. mei W. Hwu.
Importance of heap specialization in pointer analysis.
In PASTE ’04. ACM.

[12] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Online
cycle detection and difference propagation for pointer
analysis. In IEEE SCAM ’03.

[13] A. Rountev and B. G. Ryder. Points-to and side-effect
analyses for programs built with precompiled libraries.
In CC ’01.

[14] O. G. Shivers. Control-flow analysis of higher-order
languages of taming lambda. PhD thesis, Carnegie
Mellon University.

[15] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick
your contexts well: Understanding object-sensitivity.
In POPL ’11. ACM.

[16] M. Sridharan and R. Bod́ık. Refinement-based
context-sensitive points-to analysis for java. PLDI ’06.

[17] J. Whaley. Context-Sensitive Pointer Analysis using
Binary Decision Diagrams. PhD thesis, Stanford
University, Mar. 2007.

[18] J. Whaley and M. S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In PLDI ’04. ACM.

[19] R. P. Wilson and M. S. Lam. Efficient context
sensitive pointer analysis for c programs. In PLDI ’95.

[20] G. Xu and A. Rountev. Merging equivalent contexts
for scalable heap-cloning-based context-sensitive
points-to analysis. In ISSTA ’08. ACM.

198

