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Context sensitive points-to analysis, while significantly benefiting many static analysis techniques, is
known to be difficult to scale to large programs. We have designed the geometric encoding, a novel tech-
nique to effectively capture the redundancy in representing a large number of contexts without using BDD.
Compared to the state-of-the-art data compression techniques, such as BDD and EPA, geometric encoding
is also capable of evaluating contexts of points-to constraints in the compressed form directly, but incurring
much less space and time requirements. Our experiments show that, to the best of our knowledge, geometric
encoding is the first technique to perform the context sensitive analysis on large Java benchmarks with JDK
1.6 libraries. When evaluated on smaller subjects, our technique is 7.1X and 81.9X faster than the worklist
based 1-object sensitive analysis in Paddle, with the precision comparable or better when compared to the
1-object-sensitive analysis. Our reference implementation is now a part of the official distribution of Soot, a
widely used framework for analyzing Java programs.
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1. INTRODUCTION
The static points-to analysis determines, given a pointer p, the set of abstract mem-

ory locations that p may point to. The recent study [Fähndrich et al. 2000; Cheng and
Hwu 2000; Liang and Harrold 2001; Whaley and Lam 2004; Zhu and Calman 2004;
Milanova et al. 2005; Sridharan and Bodı́k 2006; Lattner et al. 2007; Xu and Rountev
2008; Yu et al. 2010] of points-to analysis focus on improving the precision of points-to
results by leveraging the context sensitivity. Context is a static abstraction to distin-
guish the different runtime invocations of the same function, typically represented by
call-string [Lhoták 2006], a sequence of callsites leading to the execution of a func-
tion. The context-sensitive points-to analysis is commonly reasoned under the k-CFA
(k ≥ 0) analysis framework [Shivers 1991], where k is the context depth that indi-
cates the length of the path ascending from any function on the call graph. Our focus
in this paper is to design a practical points-to analysis abstracted by the full context
sensitivity for both the pointer and the heap variables [Nystrom et al. 2004], where
the term full means the k is the length of the longest path in the call graph with the
strongly-connected components (SCCs) contracted. We make this decision because the
full context sensitivity is the most precise case in theory and, there is a simple nu-
merical representation for full context sensitivity, which can significantly simplify the
design and implementation of the points-to analysis.
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1.1. Challenges
We are faced with three major challenges of scaling the context sensitive analysis to
full context sensitivity with a large context depth k:

1. The number of contexts is exponential to k. For example, our smallest bench-
mark jflex has 3.9× 109 contexts, and another benchmark pmd has more than 263 con-
texts. The sheer quantity of contexts demands very compact representations in the
analysis.

2. The number of pointer constraints also grows exponentially with k, since
they need to be duplicated under every context. In order to be practical, the context
sensitive constraints require high throughput evaluation algorithms.

3. Recursive calls. The call graph may have strongly-connected components (SCC)
due to self or transitively induced recursions. Since a SCC produces a unbound number
of contexts for its member elements, it is usually contracted to a single node, causing
its members to be treated context insensitively. Because the Java programs always
contain large SCCs (Section 6) 1, we need a context sensitive treatment for SCCs to
achieve good precision.

We now discuss the limitations of the recent progress in light of tackling these scal-
ability challenges and comparatively sketch our solution.

1.2. Prior Work
Sharir and Pnueli proposed the call-string and functional approaches in their seminal
paper [Micha and Pnueli 1981], which laid the foundation for the context sensitive
program analysis. The call-string approach analyzes the program as a whole, abstracts
every variable and heap location with a static call path, in order to distinguish the
different runtime instances of the syntactically identical variables and heap memory
locations. Many pioneer algorithms [Landi and Ryder 1992; Emami et al. 1994; Wilson
and Lam 1995; Hind et al. 1999] adopt the call-string approach. The functional or
modular approach summarizes the memory effects for each function independent of
any calling context in advance, then inlines the function summaries at all the callsites
to obtain the collective points-to results. The early scalable approaches [Chatterjee
et al. 1999; Fähndrich et al. 2000; Cheng and Hwu 2000; Liang and Harrold 2001] fall
in this category. However, none of these literature reports excellent scalability because
the points-to or alias information is not efficiently represented and propagated.

Whaley et.al. [Whaley and Lam 2004] have presented the first practical solution that
uses the cloning based treatment to achieve the full context sensitivity on very large
realistic Java programs. They have successfully used BDD to compress the enormous
number of context sensitive points-to tuples and to evaluate the points-to constraints
in the compressed form. Acknowledged by the authors themselves [Whaley 2007], the
memory efficiency of BDD is heavily influenced by the insertion order of the variables,
requiring lots of tuning work in practice. More importantly, recent studies show that
BDD is not powerful enough to encode multiple context-sensitive variables simultane-
ously, as in the case of heap cloning [Lhoták and Hendren 2008]. Besides, Hardekopf
et.al. [Hardekopf and Lin 2007a] reported that the use of BDD in Anderson’s algo-
rithm for C is around 2x slower than the sparse bitmap encoding. Bravenboer et.al.
[Bravenboer and Smaragdakis 2009a] even achieved 15x speedup on average with the
Doop engine, compared to the BDD based context sensitive analyses in Paddle [Lhoták
2006]. Based on these results, BDD is limited in achieving our design objective of of-
fering a practical analysis for both pointer and heap sensitivity.

1C programs also have large SCCs [Cheng and Hwu 2000], although they are less and smaller than those in
the java programs.
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Some researchers also have made significant progress in scaling the points-to anal-
ysis using the modular approach [Liang and Harrold 2001; Lattner et al. 2007; Xu
and Rountev 2008]. The flexibility of the modular design requires an additional effort
for the parameters instantiation and the computation of the escaped information, as
compared to the whole program analysis. Lattner et.al.’s work [Lattner et al. 2007] is
quite scalable due to the use of Steensgard’s unification method for the pointer assign-
ments. Xu et.al.’s work [Xu and Rountev 2008] employ the same unification method,
e.g. for the pointers appearing at the call sites. Additionally, Xu et.al. have designed
a compression technique for eliminating redundancy in the traditional points-to rep-
resentation, aimed at minimizing the time and memory consumption. They find that
many points-to tuples share the same calling context prefixes and, by removing them,
two points-to tuples become identical2. Xu et.al. call the shared prefix the equivalent
context and design the context merging technique, EPA, to leverage the observation.
Although merging the equivalent contexts is an insightful idea, the compression op-
portunity is not fully exploited (Section 3.4). Moreover, despite that the performance of
EPA is significantly better than the BDD based Paddle points-to solver [Lhoták 2006],
its absolute running time is still unsatisfactory for the practical use. As an example,
the middle sized programs (approx. 5000 methods) analyzed with JDK 1.3 use 300 to
800 seconds execution time.

1.3. Our Contribution
To address the shortcomings of both the BDD and the functional based algorithms, we
have designed and evaluated a call-string based context sensitive points-to analysis
without using BDD. More precisely, our algorithm is a context sensitive, flow insensi-
tive, and field sensitive points-to analysis that makes use of three novel techniques:

1. We develop a new context encoding scheme called the Geometric Encoding, which
concisely represents the points-to and the pointer assignment relations as regular geo-
metric figures. Compared to EPA, the geometric encoding is simpler to implement and
superior in terms of compression capability (See section 3.4). Compared to BDD, our
encoding is much more time efficient and more flexible for performing the time and the
precision trade-off;

2. We develop a preprocessing technique called constraints distillation. In Java, most
of the constraints extracted for points-to analysis come from the Java library. However,
not all of the library code affects the points-to calculation of the user’s code. By wiping
out the inconsequential library code prior to the main analysis procedure, we improve
the performance without any precision loss;

3. The third technique is a 1-CFA model for handling the recursive calls. As shown
by Lhoták and Hendren [Lhoták and Hendren 2008], the major source of precision
loss in the full context sensitive analysis is the imprecise handling of recursive calls,
due to the fact that the Java programs commonly introduce big SCCs (Section 6). We
overcome the difficulty by providing a novel 1-CFA model built on top of the existing k-
CFA abstraction, which effectively avoids the precision and performance degradation
incurred by the large SCCs.

With these techniques, our algorithm can analyze large programs (more than 26,000
methods) with JDK 1.6, which is a major achievement in the context sensitive points-to
analysis for Java. The reference implementation of our algorithm has been accepted by
Soot [Vallee-Rai et al. 2000] since version 2.5 3, a popular framework for experiment-

2For example, (p, ζ1, o, ζ2) denotes that the pointer p under context ζ1 points to the object o allocated under
context ζ2.
3http://www.sable.mcgill.ca/soot/
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ing Java code analysis in academia. Interested readers are encourage to download and
use our algorithm in your own work.

1.4. Organization
The paper is organized as follows. We first present the background knowledge in Sec-
tion 2 to the readers who are unfamiliar to the context sensitive points-to analysis.
Section 3 provides the details of geometric encoding, including both the inference rules
and an improved context abstraction for SCC. Section 4 introduces the constraints
distillation technique and many other technical optimizations, and then induces our
main points-to algorithm. Section 5 describes the important implementation choices.
Finally, we exhibit our experimental results in Section 6, discuss the related work in
Section 7 and conclude our paper in Section 8.

2. PRELIMINARIES
Before moving to the full detail of our algorithm, we first introduce the theory of con-

text abstraction, rigorously define the full context sensitivity and prove its soundness.
Then, we introduce a simple points-to analysis that achieves the context sensitivity
by method cloning, the idea of which is first appeared in Emami et.al’s paper [Emami
et al. 1994] and developed by Zhu et.al [Zhu and Calman 2004] and Whaley et.al [Wha-
ley and Lam 2004]. Knowing how the simple algorithm works is helpful to digest our
sophisticated algorithm presented in the next section.

2.1. Context Abstraction
Briefly speaking, our points-to algorithm is a context sensitive version of the Ander-

son’s analysis [Andersen 1994]. Therefore, to demonstrate the usefulness and correct-
ness of our algorithm, we should answer the questions: What is context sensitive? Why
do we need context sensitivity? Why is it a sound program abstraction? These three
questions are the theme of this section.

In the vocabulary of abstract interpretation, the static analysis is an algorithm that
computes the solution of a set of equations over a finite abstract domain. The equations
express the semantics of the concerned constructs in a program, and the abstract do-
main defines the symbols used in the equations and spans the solution space. Context
is a way to create a precise abstract domain of the points-to analysis. Since points-to
analysis only concerns the connections between the memory locations, its abstract do-
main contains only the local, global and heap variables 4. Since any global variable has
fixed memory address at runtime, it has only one runtime instance across the program
lifetime. Therefore, we only need to create one symbolic variable for each global vari-
able in the abstract domain. However, the number of local variables are unbounded
because the lexically identical local variable creates a new running instance each time
its enclosing function executed. The situation is the same for heap variables. Hence, we
need a context function to map the elements in an infinite domain to a finite domain,
which is formally defined as follows.

DEFINITION 1. A runtime function instance is an invocation of that function.

DEFINITION 2. A Context function is a function f : R → S that maps all the
runtime function instances in the infinite domain R to a finite domain S.

With the context function, context can be defined formally:

DEFINITION 3. A Context is an element in the domain S.

4We refer to the dynamic allocated memories (e.g. malloc in C, new in C++ and Java) as heap variables.
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The call-string approach maps the runtime function instances to a set of callsites
strings (call-string). Here, the callsite only refers to the location of a function call in
the program or, more precisely, an edge in the call graph. The call-string approach,
in fact, defines a family of functions termed k-CFA, because we can limit the length
of call-string to its last k callsites (k-call-string) [Shivers 1991]. The k-call-string can
be constructed inductively. For example, a k-call-string for function foo is c1c2 . . . ck
and there is a callsite c′ in foo invoking bar, the induced k-call-string for bar can be
constructed as c2c3 . . . ckc′. To prove the soundness of the k-CFA scheme, we first define
an auxiliary function callpath.

DEFINITION 4. callpath is a function that maps the runtime instances of X to their
runtime call paths, and a runtime call path is an invocation chain of that runtime
instance.

Next, we prove the soundness of k-CFA scheme in Theorem 2.1.

THEOREM 2.1. k-CFA is a context function.

PROOF. According to Definition 2, it is sufficient to prove that the k-CFA context
function is a function map and its codomain is finite.

1. It produces finite number of call-strings (the codomain S is finite).
Suppose we have n functions and m callsites, then for any function X, the number

of k-call-string of X, denoted by CSk(f), is at most mk. Therefore, the total number of
call-strings is bounded by O(nmk).

2. It maps every element in the infinite domain to the finite domain.
For every function X, we create CSk(f) static instances. Every runtime instance of

X is mapped to one of its static instance as follows. First, we use callpath to map the
runtime instances of X to their runtime call paths. Second, since all possible runtime
call paths are included in the static call graph and every path on the static call graph is
mapped to one and only one k-call-string, hence in turn, every instance of X is mapped
to a k-call-string. This proves that the k-CFA mapping is a function.

Particularly, the case k = 0 is called context insensitive context function, i.e., every
function only has one context. Therefore, the abstract domain for a context insensitive
analysis can be built by simply collecting all the variables in the program. Because
of its simplicity and efficiency, for many approaches [Whaley and Lam 2004; Xu and
Rountev 2008; Sridharan and Bodı́k 2006; Yan et al. 2011] including ours in this paper,
performing a context insensitive analysis is the first step to collecting the program
information to assist the subsequent analysis.

In contrast, the full context sensitivity function does not restrict the length of call-
strings. However, this results in infinite number of call-strings due to the recursive
calls. To deal with the infinity, we should first identify the strong connected compo-
nents (SCC) in the call graph to build an acyclic hierarchical call graph, where each
hyper node represents an SCC and maintains the full call relationships in that SCC.
We distinguish the call edges inside 5 and outside the SCCs and call them cyclic calls
and acyclic calls respectively. Based on the hierarchical call graph, the full context
function fc is defined as follows.

DEFINITION 5. The full context function fc consists of three parts:
1. Domain R: the runtime function instances;

5Inside means two ends of that edge are both in the same SCC.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6

2. Codomain S: the set of call paths from the main function to all the functions X on
the hierarchical call graph;

3. Mapping rule fc(a) = p: let p′ = callpath(a), then p is the call-string with all the
cyclic calls removed from p′.

Theorem 2.2 proves the soundness of the context function fc.

THEOREM 2.2. The full context function fc is sound.

PROOF. The codomain S of fc is finite because the hierarchical call graph is an
acyclic graph and the number of paths for an acyclic graph is finite. According to the
definition of p, p is unique and it is exactly the call-string for p′ on the hierarchical
call graph. Since S contains all the call-strings for the hierarchical call graph, p ∈ S.
Therefore, fc maps every element in R to only one element in S, i.e., fc is sound.

2.2. A Cloning based Points-to Algorithm
In this section, we construct a simple points-to algorithm on top of the context sensitive
abstract domain built by fc, the pseudo-code of which is given in Algorithm 1. This al-
gorithm is Cloning-based and it has three steps. First, it creates the cloned call graph
(Lines 2–14) for the input hierarchical call graph. Second, it builds the abstract do-
main (Lines 15–24) and generates the constraints (Lines 25–37). Third, an Anderson’s
analysis [Andersen 1994] is performed to solve the constraints. The first two preparing
steps are explained in detail as follows.

1. Building cloned call graph. To build the cloned call graph, we first compute
a context insensitive call graph via Anderson’s analysis. Then, we contract the cycles
and build the hierarchical call graph Gh, which is the input for Algorithm 1. To process
the real Java programs, we add an artificial function SuperMain to Gh as the entry
point. SuperMain calls all possible entry points for a Java program, including the
main function, the static class initializers, and the functions called by JVM at startup.
In this way, these run-only-once functions are analyzed without contexts, which is
similar to the enhancement used for Doop [Bravenboer and Smaragdakis 2009b]. The
modified Gh is exemplified in Figure 2. Next, we traverse the graph Gh, create a clone
for each functionX by using copy-and-paste to generate a new function f′ for each of its
call-string and link each callsite to its clone f′, as exemplified in Figure 2(b). When we
generate a clone of an SCC node (Line 9), all the cyclic calls and the functions belonging
to that SCC are duplicated. In this way, the functions in the SCCs are treated context
insensitively. It is trivial to know that this cloned call graph contains all the call paths
in the codomain of fc.

2. Building abstract domain and constraints. We first put all the global vari-
ables into the abstract domain AD. Then, at Line 16, we visit all the cloned functions
and put all the local variables into AD. Meanwhile, if a heap allocation site is found,
we create a distinct symbol to represent this allocation site (Line 21) and put it into
AD. This treatment is called heap cloning or heap sensitivity.

Based on the abstract domain, we scan the source code and transform the pointer
related statements into constraints. A constraint is a transfer function that describes
effect to the abstract program state when executing this statement. For example, each
time executing the pointer assignment p = q merges the points-to result of q into p and
we formulate this semantics as p ⊇ q. Other statements are processed in the standard
way [Rountev et al. 2001].

Algorithm 1 is essentially the cloning based context sensitive analysis [Whaley and
Lam 2004; Zhu and Calman 2004] that straightforwardly integrates the context func-
tion fc into the Anderson’s analysis, thus following Theorem 2.2, its correctness is
immediate. However, it is impractical because its size of the cloned call graph and the
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Algorithm 1 The cloning based points-to analysis.
1: procedure CLONINGANALYSIS(Gh: Hierarchical Call Graph)

. Part 1: Create the cloned call graph Gc

2: for all function X do
3: csize(X) = 0 . csize(X) records the number of call-strings for X
4: end for
5: csize[main] = 1
6: for all node X in Gh in topological order do . Node X may be an SCC
7: for all acyclic call X → Y do
8: csize(Y ) = csize(Y ) + csize(X)
9: Create csize(X) copies of Y named Y1 · · ·Ycsize(X)

10: for i← 1 to csize(X) do
11: We duplicate the acyclic call Xi → Yi
12: end for
13: end for
14: end for

. Part 2: Create the abstract domain AD
15: AD← All the global variables
16: for all function X in the cloned call graph Gc do
17: for all local variable l in X do
18: AD = AD ∪ l
19: end for
20: for all heap allocation site p = new XXXX in Xx do
21: Create a new symbol o for the expression new XXXX
22: AD = AD ∪ o
23: end for
24: end for

. Part 3: Generate the constraints C
25: C← ∅
26: for all statements in the cloned call graph Gc do
27: if the statement is p = new XXXX then
28: We lookup the symbol o for the expression new XXXX
29: C← C ∪ “p ⊇ {o}′′
30: else if the statement is p = q then
31: C← C ∪ “p ⊇ q′′
32: else if the statement is p.f = q then
33: C← C ∪ “p.f ⊇ q′′
34: else if the statement is q = p.f then
35: C← C ∪ “q ⊇ p.f ′′
36: end if
37: end for

. Part 4: Solve the constraints
38: Apply the Anderson’s analysis to C
39: end procedure

abstract domain AD, and the number of the constraints C are all exponential to the
length of the longest path in the call graph. To make it useful, Whaley et.al [Whaley
and Lam 2004] and Zhu [Zhu and Calman 2004] leverage the BDD data structure to
compress the abstract domain and conduct the analysis in a compressed form. Their
methodology successfully lowers the processing time down to a practical level. How-
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ever, they compromise that the heap variables are handled context insensitively 6, thus
in turn, damage the analysis precision. We design a new data compression scheme
called the geometric encoding to deal with the space and time explosion problem. This
new approach is specially designed for heap sensitivity and it allows us to build a more
precise full context function fc. In the next section, we will replace the components
Part 1–3 in Algorithm 1 with new ones that can compress the cloned graph, abstract
domain AD, and the constraints set C to linear size. Then, we will redesign Part 4 that
can compute the fixed point solution on the compact form.

3. GEOMETRIC ENCODING

Geometric encoding is a technique that compresses the abstract domain and rewrites
the constraints semantics based on the encoded abstract domain. It also offers an in-
ference system to evaluate the constraints in the encoded form, hence, it lays the foun-
dation for computing the collecting semantics in a compact way.

In this section, we first give an example to informally illustrate our high level idea.
The content of the example is rich enough to cover all the aspects of using geometric
encoding for points-to analysis. In the rest of the subsections, we elaborate our obser-
vation and give a formal definition and proof for the geometric encoding.

3.1. Example and Insight
To help us present our technique, we symbolize the well known terms first.

p 7→ o. : p points to o;
p; q. : p assigns to q, i.e. the abbreviation of the assignment q = p;
pts(p). : The points-to set of pointer p.

We illustrate our main insight using the sample code in Figure 1, which is a linked
list exercise. The merge function is shown in the single static assignment form (SSA)
[Cytron et al. 1991], because we can enjoy the limited flow sensitivity in this way
[Hasti and Horwitz 1998]. The major challenge for analyzing the program is that all
the objects are created at the two allocation sites in the Lines 12 and 35. Thus, we need
the heap sensitivity to distinguish the objects created under different invocation paths
of the allocations. Suppose we label the contexts of each function by the integers 1, 2
. . . N, where N is the total number of acyclic paths from SuperMain to that function on
the hierarchical call graph (Figure 2), our aim is to conclude that every version 7 of the
instance field o35.next points to all versions of o12.

To achieve this, Algorithm 1 evaluates the statements Node t1 = new Node() (Line
12), p2 = φ(p1, p3) (Line 14), p2.next = gList (Line 19), and gList = t1 (Line 20) many
times under different contexts. However, with the following two observations, this com-
putation can be dramatically simplified. First, the statement Node t1 = new Node()
is evaluated under 3 contexts uniformly and independently, because o12 under the ith
context only assigns to t1 under the ith context. The evaluation result is t11 7→ o121 ,
t12 7→ o122 and t13 7→ o123 . To help us study the pattern, we formalize the representation
as t1y 7→ o12x , ∀x ∈ [1, 4), y = x. Note that, considering only the subscripts x and y,
they form a one-to-one mapping that can be geometrically interpreted as a diagonal
line segment y = x, x ∈ [1, 4). The evaluation of p2 = φ(p1, p3) (Line 14) is in the similar
way. For illustration purpose, we only explain the assignment p2 = p1 for the φ-function
and the assignment p2 = p3 is evaluated in the same way. Since p1 possesses the values

6At Line 21, we only create once for every new expression in the original program, rather than creating once
for each occurrence in the cloned program.
7The pointer p under different contexts are spoken as different versions of p.
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24  class Node {
25 int id;
26 public Node next;
27  }
28
29  class List {
30 public static List prepare( int n ) {
31 List t2 = List.createList( n );
32 return t2;
33 }
34 public static Node createList( int n ) {
35 Node t3 = new Node(); // o35

36 initialize( t3 );
36 t3.next = setNext( n );
37 return t3;
38 }
39 public static Node setNext( int n ) {
40 Node nxt = createList( n – 1 );
41 return nxt;
42 }
43 public static void setID( Node t4 ) {
44 t4.id = -1;
45 t4.next = null;
46 }
47  }

1  class Main {
2 Node gList = null;
3 public static void main(String[] args) {
4 Node list1 = prepare( 121 );
5 Node list2 = prepare( 34 );  
6 Node list3 = prepare( 56 );
7 merge( list1 );
8 Node q2 = merge( list2 );
9 merge( list3 );
10 }
11 public static Node merge(Node p1) {
12 Node t1 = new Node(); // o12

13 t1.next = p1;
loop_start:

14 p2 = Φ ( p1, p3 );
15 if ( p2.next != null ) {
16 p3 = p2.next;
17 goto loop_start;
18 }
19 p2.next = gList;
20 gList = t1;
21 return t1.next;
22 }
23 }

Fig. 1. The running example of this paper. The statements related to points-to analysis are highlighted.

from list1, list2 and list3 under the context 1, 2, 3 respectively and, assigning p1 to p2
is a one-to-one mapping, we conclude that (p2)y 7→ o35x , ∀x ∈ [1, 4), y = x.

Second, gList = t1 8 is also independently evaluated under three contexts. The dif-
ference is that gList is a global variable and it has only one version. Therefore, all the
versions of t1 are assigned to the single version of gList, written as gList1 = t1x,
∀x ∈ [1, 4). This is a many-to-one mapping between t1 and gList, it can be interpreted
as a horizontal segment y = 1, x ∈ [1, 4).

The tricky case is the dereference assignment p2.next = gList. Since we always re-
fer to the same version of gList and it points to all three versions of o12, evaluating
p2.next = gList would introduce nine new points-to relations between o35.next and o12.
These relations are established in two steps. First, since gList would assign to all ver-
sions of p2.next and (p2)y 7→ o35x , ∀x ∈ [1, 4), y = x, hereby we conclude gList assigns
to all versions of o35.next. After the replacement of p2 to o35, we can reformulate the
assignment as o35.nexty = gList1, ∀y ∈ [1, 4). This is an one-to-many mapping. Geomet-
rically, we interpret the assignment as a vertical segment x = 1, y ∈ [1, 4). Second, we
evaluate this reformulated assignment, we have o35.nexty 7→ o12x , x ∈ [1, 4), y ∈ [1, 4).
Algebraically, this is a many-to-many mapping and, geometrically, we can encode these
relations as a rectangle where 1 ≤ x ≤ 3 and 1 ≤ y ≤ 3.

By encoding the pointer assignments and points-to facts geometrically, we can use
the corresponding algebraic operations to evaluate a large number of constraints un-
der different contexts simultaneously. Let us demonstrate the idea by reiterating the
evaluation with the encoded geometric shapes. Combining t1y 7→ o12x (y = x, x ∈ [1, 4))
and gList1 = t1x (y = 1, x ∈ [1, 4)), we obtain gList1 7→ o12x (x ∈ [1, 4)) because all ver-

8The analysis is flow insensitive, hence the constraint evaluation order can be arbitrarily tuned.
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main()
Context Size: 1[1,2) -> [1, 2)

[1,2) -> [1, 2)
[1,2) -> [2, 3)

Main.merge(Node)
Context Size: 1

SuperMain
Context Size: 1

[1,2) -> [1, 2)

Main.static()
Context Size: 1

[1,2) -> [1, 2)

[1,2) -> [3, 4)

List.prepare(int)
Context Size: 3

[1,4) -> [1, 4)

[1,2) -> [2, 3) [1,2) -> [3, 4)

List.initialize(Node)
Context Size: 3

[1,4) -> [1, 4)

List.createList(int)
Context Size: 3

List.setNext(int)
Context Size: 3

[1,4) -> [1, 4)

[1,4) -> [1, 4)

A SCC hyper node

Fig. 2. The hierarchical call graph.

sions of o12 are passed to gList via all versions of the intermediate variable t1. Again,
applying (p2)y 7→ o35x (y = x, x ∈ [1, 4)) to p2.nexty = gList1 (y ∈ [1, 4)), we initialize
the dereference assignment as o35.nexty = gList1 (y ∈ [1, 4)). Finally, we evaluate the
initialized assignment and obtain o35.nexty 7→ o12x (1 ≤ x ≤ 3, 1 ≤ y ≤ 3). Computing
these points-to relations geometrically only evaluates the corresponding constraints
once independent of the number of contexts.

The discussion above illustrates the key concepts of the geometric encoding: Num-
bering the contexts, encoding the program statements, reasoning the encoded facts us-
ing geometric operations. Next, we describe these steps in detail and prove the sound-
ness of our new points-to analysis.

3.2. Contexts Naming

Part 1 of Algorithm 1 explicitly constructs the cloned call graph. However, this step
is only a conceptual processing step because the cloned call graph size is too huge.
Contexts naming aims at labeling the call-strings with natural numbers and, thus,
compressing the cloned call graph by encoding the contexts involved between the caller
and the callee. For example, in Figure 3, the call edge prepare→ createList is cloned to
three edges. If we only consider the context numbers for these call edges, we write them
as 1 → 1, 2 → 2 and 3 → 3. Because the context numbers involved in the call edges
are consecutive, we concisely write it as a one-to-one mapping between two intervals:
[1, 4)→ [1, 4), referred to as the context mapping.

In this section, our main task is to build the context mapping for every call edge.
We pass the hierarchical call graph Gh as shown in Figure 2 to Algorithm 2 to locally
number the contexts for each function X by the integers 1, 2, . . . , N. N is called the
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SuperMain1

Main.static()1 main()1

List.createList(int)1 List.createList(int)3

List.setNext()1
List.setNext()3List.setNext()2

Main.merge()1

List.createList(int)2

List.prepare(int)1 List.prepare(int)3List.prepare(int)2

Main.merge()2

Main.merge()3

List.initialize(Node)1

List.initialize(Node)2

List.initialize(Node)3

Fig. 3. The cloned call graph.

Algorithm 2 Number the static calling paths.
1: procedure NAMECONTEXTS(Gh: Hierarchical Call Graph)
2: for all function X do
3: csize(X) = 0
4: end for
5: csize(SuperMain) = 1
6: for all node X in Gc in topological order do
7: for all acyclic call edge X → Y do
8: callmap[X → Y ] = csize(Y ) + 1
9: csize(Y ) = csize(Y ) + csize(X)

10: end for
11: end for
12: for all none representative node X of SCC do
13: csize(X) = csize(rep(X))
14: end for
15: for all cyclic call edge X → Y do
16: callmap[X → Y ] = 1
17: end for
18: end procedure

context size, denoted by csize(X), which is the number of acyclic call paths on Gh from
SuperMain to X. The term context bar, symbolized as [1, csize(X)], describes all the
contexts of function X in an interval form. The context mapping between two functions
for a callsite X → Y is captured by callmap[X → Y ] = offset, which maps a context
of X to a context of Y by adding offset to that context of X. For example, we have
callmap[X → Y ] = U , meaning that for each context c ∈ [1, csize(X)] of X, we map it to
the context c′ of Y , where c′ = c+ U .

Algorithm 2 visits all the functions in the topological order and obtains the first con-
text of the context mapping for each call X → Y by adding one to csize(Y ) (Line 8). We
then increase csize(Y ) by csize(X), which determines the number of contexts mapped
from X to Y (Line 9). In this way, the contexts induced by X → Y are consecutively
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X1: [1, 10)

Y

X2: [1, 5)

X3: [1, 7)

X4: [1, 12)

X5: [1, 10)

[1, 10) [10, 15) [15, 22) [22, 34) [34, 44)

Fig. 4. A pictorial explanation of building the context mappings for the call edges. The symbols X1 – X5

and Y are functions, the arrows represent the context mappings.

located on the context bar of Y , which is crucial for us to use the simple regular geo-
metric shapes for encoding the mapping relations. As an example shown in Figure 4,
the contexts induced by the call X3 → Y are [15, 22), which is a consecutive interval.
The cyclic call edges are still handled context insensitively (Lines 12–14), where the
function rep(X) retrieves the representative of the SCC the functionX belongs to. This
simple strategy not only affects the SCC call edges, but also influences all of the calls
to the functions in the SCC from outside, making a large part of the code context in-
sensitive. We will generalize Algorithm 2 to handle the SCC more precisely in Section
3.5.

Example. The result of applying Algorithm 2 to our running example is given in
Figure 1. The callmap content is drawn on the call graph edges, where [1, 2)→ [3, 4) of
the third call edge (a.k.a e3) from main to prepare stands for callmap[e3] = 3.

3.3. Geometric Encoding System
Recall Algorithm 1, it builds the abstract domain AD and constraints C in Part 2 and
Part 3. In this section, we show how to compress the abstract domain and generate the
compressed form of constraints. After this step, all the statements that manipulate the
pointers are encoded. Then, we introduce the inference rules that are used to interpret
the semantics of the constraints in encoded form. This knowledge is prepared for the
main points-to analysis algorithm given in Section 4.

3.3.1. Constructing the initial encoding. The initial encoding aims to build the encoded
representation of the program facts. In Java, we only care about the pointer assign-
ments (p = q), object allocation (p = new Object()) and the pointer dereferences
(p.f = q and p = q.f ). To ease our analysis, we assume the initial encoding is built on
the static single assignment form 9 of the program.

Pointer Assignments. We first consider the assignment q = p, where both p and q
are local to function X. The assignment has the semantics that p under the ith context
only assigns to q under the ith context, written as qi = pi,∀i ∈ [1, csize(X)]. Using
the context numbers of p and q as the coordinates, all the points (i, i) on a plane
essentially form a diagonal segment. To encode this fact, a 5-tuple representation
(p, q, 1, 1, csize(X)) is provided to concisely name the assignments q1 = p1, q2 = p2, . . . ,

9The Φ function can be decomposed into several pointer assignments, hence we do not discuss it in this
paper.
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qcsize(X) = pcsize(X). This expression faithfully captures the one-to-one mapping between
p and q.

The function callmap computed by Algorithm 2 is leveraged if p and q, local to dif-
ferent functions, e.g., X and Y , are involved in an inter-procedural assignment. In the
case of parameter passing via the function call X → Y , we let K = callmap[X → Y ],
the context sensitive form of the assignment q = p is expressed as (p, q, 1,K, csize(X)).
Correspondingly, in the case of function return, the context sensitive version of q = p
is encoded as (p, q,K, 1, csize(X)).

The assignments with globals are the major source of sophistication because globals
are modeled context insensitively. For instance, the assignment g = p, where g is a
global, means that all versions of p assign to the singleton version of g. This is a many-
to-one mapping and its geometric interpretation is a horizontal segment. Conversely,
the assignment p = g is a one-to-many mapping that represents a vertical segment.
More complicated case occurred in the example g = p followed by q = g where q is
another local. The relation between p and q is all versions of p assign to all versions of
q, which forms a many-to-many mapping, figured as a rectangle.

We now define our symbols formally:

DEFINITION 6. The geometric encoding compresses the context sensitive points-to
and assigns-to relations as a set of geometric descriptors (V1, V2, x1, y1, L1, L2) (L2 is
optional), abbreviated as EV1/V2

. The first two terms (V1, V2) is an interpreter, desig-
nating the variables involved in this encoded mapping relation. The following 4-tuple
(x1, y1, L1, L2) or 3-tuple (x1, y1, L1) is called geometric extension. It describes how
the variable V1 is mapped to V2, and we denote it [V1, V2]ext.

Table I. Graphical explanation of the encoding tuples.

(V1, V2, I1, I1 + b, L) (V1, V2, b1, b3, b2 − b1, b4 − b3)

We treat the horizontal and the vertical segments as two special cases of rectangle.
Hence, the geometric extension is either a diagonal segment or a rectangle. Formally,
we define our encoding in the algebraic form as follows and show the geometric inter-
pretation in Table I:

DEFINITION 7. The 3-tuple and 4-tuple geometric extension describes the following
two geometric figures respectively:

The diagonal segment y = x + b. It indicates the one-to-one mapping which con-
stantly offsets by b from X values to Y values in order. We encode this segment by a
5-tuple: (V1, V2, I1, I1 + b, L), where [I1, I1 +L) is the range of X and [I1 + b, I1 + b+L) is
the range of Y;

The rectangle bounded by four lines x = b1, x = b2, y = b3, y = b4 where b1 < b2
and b3 < b4. It represents the many-to-many mapping, i.e., every value of X are mapped
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to multiple values of Y. We encode the rectangle by a 6-tuple: (V1, V2, b1, b3, b2−b1, b4−b3),
where [b1, b2) and [b3, b4) are the ranges for the width and the height of the rectangle.

Object Allocation. Encoding the object allocation statements (p = new Object()) is
very similar to encoding the pointer assignments. We first name the new expression
(e.g. new Object()) by an unique name o, then we treat o as a local if this new
expression is written in a function, or a global if it appears in a static initializer for
a class. Next, we encode p = o in the same way as an assignment statement (assume
both p and o are local to function X), and obtain the outcome (p, o, 1, 1, csize(X)).
Comparing to the encoded assignment, the only difference is that p is written as the
first term. Moreover, all the generated points-to relations during the analysis are also
represented in this form.

list2

list1

gList

o12

(1, 1, 3)

(1, 1, 3, 1)

t1

(1, 1, 3)

t1.next

o35

(1, 1, 3)

t4

(1, 1, 3)

t3

nxt

(1, 1, 3)

t3.next

(1, 1, 3)

t2
(1, 1, 3)

list3

(1, 1, 1)

(2, 1, 2)

(3, 1, 1)
p1

(1, 1, 1)

(1, 2, 1)

(1, 3, 1)

p2.next

(1, 1, 3)

q2

(2, 1, 1)

(1, 1, 1, 3)

p3

p2 (1, 1, 3)

(1, 1, 3)

Fig. 5. The graphic form of the initial encoding.

Pointer Dereference Assignments. The pointer dereference statements include
the load and the store statements that access the instance fields. For example, q.f
accesses the f field of the object pointed to by q. The geometric extensions of the store
statement q.f = p and the load statement q = p.f are exactly the geometric extension
of its corresponding simple assignment q = p. This is because the encoded deference
assignment is solely used to compute the geometric extension of the assignment to
(from) instance field o.f = p (or q = o.f ), by replacing q.f (or p.f ) with q 7→ o (or p 7→ o).
We call this process instantiation.

Example. The initial encoding of our running example is included in Figure 5,
where the geometric extensions are drawn on the arrows. Taking the assignment
gList = t1 as an example, we encode it as (t1, gList, 1,1,3,1), meaning all versions
of t1 under the contexts [1,1 + 3) are assigned to the single version [1,1 + 1) of
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gList. The points-to relation (t1, o12, 1, 1, 3) is also represented in assignment form, for
illustration purpose.

Soundness. The soundness of the initial encoding means all the possible assign-
ments collected in Algorithm 1 are encoded. Of course, the subsequent reasoning will
produce unsafe result if some facts are missed.

LEMMA 3.1. The initial encoding summarizes all the possible assignments under
the full context sensitivity.

PROOF. We only show that the encoding of the simple pointer assignment statement
p = q is sound, the other kind of statements can be proved using the same argument.
First of all, the syntactically identical local variables under different contexts do not
interfere each other. This is because a local variable is freshly allocated each time its
enclosing function executed. Therefore, the ith copy of q can only update the ith copy
of p in the assignment p = q, where p and q are two local variables inside the same
function. Our one-to-one mapping representation faithfully encodes this fact, thus, it
does not miss any assignments.

In the interprocedural assignment induced by the call X → Y , if the ith context of
X can invoke the jth context of Y , we should add an assignment pj = qi. Since the
callmap function computed in Algorithm 2 captures all the context mappings induced
by the function call, all the interprocedural assignments are encoded.

Since the global variable has only one version in our abstract domain (Section 2.1),
in the assignment p = g (g = p) where g is a global variable, all versions of p read
(write) the value from (to) the same version of g. Therefore, our encoded facts contain
all the assignments involving the global variables.

From our analysis, we know the initial encoding is a sound summarization of all
possible assignments under the full context sensitivity model.

3.3.2. Reasoning with the geometric encoding. The assignment constraint is reasoned un-
der the fusion operator ◦: Given the geometric extensions of the relations p assigns-
to q and p points-to o, we compute the geometric extension of the relation q points-
to o. For example, we have (t1, o17, 1, 1, 3) and (t1, gList, 1, 1, 3, 1), the fusion result is
(gList, o17, 1, 1, 1, 3). This is obtained in four steps. First, we extract the context ranges
of pointer t1 10 in the points-to and assigns-to figures, which are [1, 4) and [1, 4). Sec-
ond, we intersect these two ranges and obtain the common section [1, 4). We call this
step clipping. Third, we compute the intervals of gList and o respecting to the interval
[1, 4) of p. In our case, they are [1, 2) and [1, 4). Finally, we compute the mapping rela-
tion between gList and o, and we call this step expanding. Since all pi (i ∈ [1, 4)) assign
to the single copy of gList, it is a many-to-many mapping and encoded by a rectangle:
(gList, o17, 1, 1, 1, 3).

Instantiating the complex constraint can be performed in the same way as evaluat-
ing the pointer assignment, represented by the operator •. For example, we instanti-
ate the store constraint (nxt, t3.next, 1, 1, 3) against the points-to fact (t3, o35, 1, 1, 3). We
also need four steps of calculation discussed above, but this time the agent pointer is t3
and its intersected interval is [1, 4) in the clipping step. After mapping the intersection
interval to the variables nxt and o35, we obtain (nxt, o35.next, 1, 1, 3).

We depict the inference rules for the pointer assignments in Table II 11. Each in-
ference rule contains three mutually perpendicular planes, and the input shapes are
given in the planes < p, o > and < p, q >. We deduce the shape on the plane < q, o > by

10Since t1 appears in both tuples, it is called the agent pointer.
11Because the complex constraints instantiation are exactly the same, we thereby elude the details.
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Table II. Assignment Inference Rules. For each picture, the figures on the
planes < p, o > and < p, q > are given as input, describing the p points-to
o relation and the p assigns-to q relation. The generation steps of the figure on
the plane < q, o > are implicitly stated by the dashed lines, which stand for the
clipping and expanding operations.

Points-to

A
ss

ig
ns

-t
o

N
ot

es If the figures on the < p, o > and < p, q > planes have empty
intersection on p, there is no figure generated on the plane
< q, o >.

the clipping and expanding steps explained before, which are rendered by the dashed
lines. The application of these rules to our discussed instances in the previous two
paragraphs are given in Table III. And the points-to solution of repeatedly applying
these rules are given in Figure 6. From Table II, we conclude that <S, ◦> and <S′, •>
are two magma algebraic structures because the computation is closed under the op-
erators ◦ and •, where S and S′ are sets of diagonal segments and rectangles. This
result indicates the inherit membership complexity of geometric encoding is quite low,
because only two simple geometric figures are involved. Moreover, the soundness of
the inference rules can be verified easily. We prove it in Lemma 3.2.

LEMMA 3.2. The inference rules for ◦ and • are sound.

PROOF. We only prove the soundness for the operator ◦ and the argument is appli-
cable to • as well. The correctness of the clipping step is intuitive, of course we only
need to consider the common contexts of the agent pointer. The expanding step infers
the shape of the result figure, of which the correctness is discussed as follows:

1. The input [p, o]ext and [p, q]ext are both diagonal segments. Because, for any pi, we
know there is only one oj satisfying pi 7→ oj and only one qk satisfying pi ; qk, we
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Table III. Exemplify the usage of the inference rules.

(a). Assignment (b). Store (c). Load

(a): (t1, o17, 1, 1, 3) ◦ (t1, gList, 1, 1, 3, 1)

(b): (t3, o35, 1, 1, 3) • (nxt, t3.next, 1, 1, 3)

(c): (p2, o12, 1, 1, 3, 3) • (p2.next, p3, 1, 1, 3)

o12

t1
(1, 1, 3)

list1

o32

(1, 1, 1)

p1 (3, 3, 1) t3

(1, 1, 3) t2

(1, 1, 3)

o35.next, 
o12.next

(1, 1, 3)
nxt

(1, 1, 3)

gList

(1, 1, 1, 3)

t4

(1, 1, 3)

list2

list3 (1, 2, 1)

(1, 3, 1)

(2, 2, 1)

(1, 1, 1)

q2
(1, 1, 3, 3)

(1, 1, 3, 3)
q3

(1, 1, 3, 3)

p3
(1, 1, 3, 3)

Points-to

Includes

(1, 2, 1)

p2

Fig. 6. The graphic form of the points-to solution. The result of p2 is the union of the p1 and p3.

conclude that oj is only pointed-to by qk in the inference result. Therefore, [q, o]ext is a
diagonal line;

2. The input [p, o]ext is a diagonal segment and [p, q]ext is a rectangle. For any oj , it is
pointed-to by only one pi. However, pi is assigned to all versions of q. We know that all
versions of q point to oj . Thus, [q, o]ext is a rectangle;

3. The input [p, o]ext is a rectangle and [p, q]ext is a diagonal segment. In this situa-
tion, pi points to all versions of o, and pi is exclusively assigned to qk, hence, qk points
to all versions of o. Therefore, [q, o]ext is a rectangle;

4. The input[p, o]ext and [p, q]ext are both rectangles. This inference rule can be seen
as a special case of inference rule 2 or 3. Thus, [q, o]ext is a rectangle.

In sum, the inference rules for ◦ and • are sound.

3.4. Characteristics of Geometric Encoding
The geometric encoding overall offers the higher compression capability and precision
fidelity than the state-of-the-art non-BDD based points-to analysis EPA [Xu and Roun-
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tev 2008]. Without the globals, our encoding is as compact and precise as EPA. This
property can be demonstrated through an example of two functions, X and Y , that
share a lowest common ancestor function Z on a SCC-condensed graph. If a pointer p
in X points to an object o created in Y , EPA represents the fact by a 4-tuple (p, ξ1, o, ξ2),
where the symbols ξ1 and ξ2 are the call paths to X and Y descending from Z. In our
representation, (p, ξ1, o, ξ2) is encoded as (p, o, ip, io, csize(Z)), denoting that the csize(Z)
number of p from the context ip points to the csize(Z) number of o from the context
io. These two encodings have no difference except the representation of the contexts.
Therefore, both encodings have the same compression capability and precision fidelity.

However, since the EPA algorithm does not clone the objects o pointed to by the
globals, it causes two problems. First, it cannot compress those points-to facts related
to o, because o is treated context insensitively and no common call string prefixes
can be exploited. Second, as the consequence of the context insensitivity, the precision
is degraded. Intuitively, consider our sample code in Figure 1. Since gList points to
some versions of o12, the EPA algorithm directly makes o12 insensitive, making q2 an
alias to both list1 and list3. This is because the single version of o12.next points to all
versions of o35 under the EPA approach, for which our encoding correctly concludes
that the different versions of o12.next point to different versions of o35. Therefore, in
the presence of the globals, our encoding is more compact and precise than EPA.

Another noteworthy characteristic of our geometric encoding is that the evaluations
of all kinds of constraints are always O(1). While BDD can also perform a group of
assignments and instantiations in one operation, the complexity varies from O(1) to
O(U2) with no guarantee, where U is the maximum context size of all the functions.
The is because the complexity of the relprod operation for computing the relational
product of two BDDs is O(n1n2), where n1 and n2 are the number of nodes of the input
BDDs given to relprod, ranging from O(1) to O(U) (O(U) = O(2logU )).

3.5. Recursive Calls Revisited
Due to the unbounded number of contexts incurred by the SCCs, the full context sen-
sitive analysis usually, including our algorithm presented so far, apply a 0-CFA model
by contracting each SCC to a single node and computing the context insensitive re-
sults inside of the SCCs. This treatment causes to precision degradation because the
points-to facts for the variables inside of these SCCs become imprecise and, the call
edges between the non-SCC and SCC functions further exacerbate the degradation of
the analysis quality by propagating the imprecise results to the whole program. This
is problematic because Java programs tend to have large SCCs due to the imprecise
call graph resolution.

Algorithm 2 produces a 0-CFA model for SCCs because, for any recursive callX → Y ,
we restrict csize(X) = csize(Y ) and callmap[X → Y ] = 1 . With this treatment, for any
other call edge callmap[X ′ → Y ] = s, every context i ∈ [s, s+csize(X ′)) of Y is also used
as the image of the ith context in the context mapping induced by X → Y . Therefore,
the return value of Yi will be passed to both X and X ′, ∀i ∈ [s, s+ csize(X ′)).

The core idea of our remedy, the blocking scheme, is allowing the SCC members to
have different number of contexts. Consider the partial call graph in Figure 7(a), we
obtain its 1-CFA model in Figure 7(b) as follows.

1. We still run Algorithm 2 first and suppose the functions A, B, E and k others in
the SCC all have m contexts, the function D outside the SCC has n contexts (n < m).

2. For each function in the SCC, we re-calculate its context size. Taking function C
as an example, it has k+3 incoming calls. Hence, we reassign csize(C) = (k+2)×m+n
and divide its context bar into k+3 blocks, where the first k+2 blocks have m contexts
and the last one has n contexts.
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m m K*m n

b. 1-CFA abstraction for the SCC

m m K*m n

m

A B 1 k D1 k……

csize[A, B, C, E, f1 … fk] = m
csize[D] = n < m

a. Partial call graph involving SCC

Fig. 7. The 1-CFA modeling of an SCC. A, . . . , E, f1 . . . fk are functions, the segments under which denote
the context bars, and the lines denote the context mappings.

3. We map the call A → C to the first block, B → C to the second block, and so on.
This step is finished by changing callmap[A → C] = 1, callmap[B → C] = m + 1, . . . ,
callmap[D → C] = (k + 2)×m+ 1.

After processing all the SCC functions in the way above, we build a new context func-
tion bcf. We say bcf treats the SCC functions in the 1-CFA manner because the input
points-to information passed to C from different callsites (A, B, D, etc.) are processed
without interference, and, if the points-to information is passed to E, it is merged
again. Nevertheless, as confirmed by the experiments, our improved model for SCCs
still gains non-negligible precision over the 0-CFA model.

We should also adapt the way of building initial encoding to the new context function
bcf. As an example, we try to build the encoding for the parameter passing, p = q,
incurred by the call C → E. With bcf, we have csize(C) > csize(E), hence we cannot
simply generate the constraint (q, p, 1, callmap[C → E], csize(C)). Instead, we map all
the blocks of C one-by-one on to E. This time, we build k+ 3 mappings from C to E for
the k + 3 blocks of C, hence we generate k + 3 constraints (q, p,1, callmap[C → E],m),
(q, p,m, callmap[C → E],m), . . . , (q, p, (k+2)×m, callmap[C → E], n).

Let us apply our blocking scheme to the call graph in Figure 2 and illustrate the
blocked mapping structure in Figure 8. In our example, the createList function is ex-
tended to two blocks, occupying the contexts [1, 4) and [4, 7) and used by prepare and
setNext, respectively. The createList also calls the initialize function, of which the con-
texts are induced by the contexts [1, 4) of createList. For this callsite, we map both the
context blocks [1, 4) and [4, 7) of createList to [1, 4) of initialize.

Finally, we prove the context function bcf is sound in Lemma 3.3. Notice that, this
lemma is a constructive proof, it can also be used for translating any call-string to our
integer representation of contexts.

LEMMA 3.3. The context function bcf : R→ S is sound.
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createList(int)

prepare(int)

[1, 4) -> [1, 4)

setNext(int)

[1, 4) -> [1, 4)
[1, 4) -> [4, 7)initialize(Node)

[1,4) -> [1, 4)

[4, 7) -> [1, 4)[4, 7) -> [1, 4)

Fig. 8. Blocking scheme illustration for our sample code. The dotted lines represent the context mappings
introduced by the blocking scheme.

PROOF. We first prove that any runtime call-string e1e2 · · · eK leading to the func-
tion U is mapped to a unique context of U . Our proof uses an auxiliary function φX(e)
for all the call edge e : Z → X. φX(e) is built as follows.

1. X is not a member of any SCC. In this case, we do not apply the blocking scheme
to X, thus, φX(e) = callmap[e].

2. X is a member of any SCC. To compute φX(e), we modify the second step of our
blocking scheme. Similar to csize(X), we maintain an array bsize(X) and initialize it to
one. Then, we visit the incoming call edges of X one by one. When processing the edge
e : Z → X, we assign φX(e) = bsize(X) and update bsize(X) = bsize(X) + csize(Z).

Now we translate the call-string e1e2 · · · eK starting at SuperMain to our integer con-
text i. By our definition of SuparMain, e1 cannot be a recursive call, thus we directly
assign i = callmap[e1]. For the rest of the call edges, et : X → Y , 1 < t ≤ K, the
context is transferred as: i = i − φ(et−1) + callmap(et). In this formula, the first term
i−φ(et−1) computes the offset of the context i to the first context of its enclosing block.
This result is required because, according to the blocking scheme, all the blocks of X
are individually mapped onto Y . Thus, we should know the offset of i within its enclos-
ing block. Next, we use the callmap function to help locate the first context on Y for
the enclosing block of i. After the call edge eK is processed, we obtain the context i of
U that the input call-string is mapped onto.

Combining the fact that the located context i is unique and every function instance
can be mapped to a runtime call-string, we prove that every element in R is mapped to
an integer context in S.

4. THE POINTS-TO ALGORITHM
The skeleton of our points-to algorithm is given in Algorithm 3, which only replaces the
inference rules of the Anderson’s analysis with our new rules given in Section 3.3.2. In
summary, the anatomy of our points-to algorithm is as follows.

Lines 2–5: These lines are the preparation steps. The function constraintsDistillation
eliminates the useless constraints that do not affect the pointers in the user’s code,
and the function offlineMerging identify the pointers that may have the same context
sensitive points-to result. These two analyses are given in Section 4.1. The third func-
tion, buildInitialEncoding, creates the initial encoding for the program facts. The last
initialization work is putting the pointers that are the receivers p at the allocation
sites, p = new Object(), into the worklist.
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Algorithm 3 The Points-to Analysis Main Algorithm
1: procedure POINTSTOANALYSIS
2: CONSTRAINTSDISTILLATION( )
3: OFFLINEMERGING( )
4: BUILDINITIALENCODING( )
5: Worklist← pointers have unprocessed points-to tuples
6:
7: while Worklist 6= ∅ do
8: pick a pointer p from Worklist
9: GEOMETRICMERGING(p) . Must perform at the start of the loop

10: for all newly added points-to relation Ep/o do
11: for all store constraint Ep/q.f do
12: Ep/o.f = INSTANTIATE(Ep/o, Ep/q.f )
13: if ADDEDGE(Ep/o.f ) then
14: put o.f into Worklist
15: end if
16: end for
17: for all load constraint Eq.f/p do
18: Eo.f/p = INSTANTIATE(Ep/o, Eq.f/p)
19: if ADDEDGE(Eo.f/p) then
20: put p into Worklist
21: end if
22: end for
23: end for
24:
25: for all pointer assignment Ep/q do
26: for all points-to relation Ep/o do
27: PROPAGATE(Ep/q, Ep/o)
28: if ADDPOINTSTO(Eq/o) then
29: put q into Worklist
30: end if
31: end for
32: end for
33: end while
34: end procedure

Lines 9: Before processing a pointer p, we try to merge its points-to tuples (e.g.
(p, o, 1, 2, 3)) and the assigns-to tuples (e.g. (p, q, 5, 6, 7)) for saving memory and speed-
ing up the fixed-point convergence. This is achieved by finding the bounded rectangle
of these small geometric figures (Figure 9). This operation is called geometric merging
and the details are given in Section 4.1.

Lines 10–23: We instantiate the complex constraints taking p as the agent pointer
(Section 3.3.2). The function addEdge called at line 13 adds the instantiated constraint
to the PAG, if there does not exist a bigger geometric figure that completely covers the
geometric figure of this new edge.

Lines 25–32: This piece of code uses the assignment inference rules (Table II) to
propagate the points-to facts. addPointsTo adds a new points-to relation to the points-
to solution and puts the receiver pointer q into the worklist, if there does not exist a
bigger geometric figure that covers the geometric figure of the new points-to relation.

Our implementation of Algorithm 3 also employs the common acceleration tech-
niques for Anderson’s analysis such as the difference propagation and the prioritized
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worklist [Pearce et al. 2003]. More details about the implementation can be found in
Section 5.

4.1. Optimizations
Constraints Distillation. The prevalent use of libraries in Java program inhibits the
scaling of the points-to analysis. However, most of the time, only the precise points-to
information for the user’s code is necessary for the subsequent use. This observation
is similar to Rountev’s [Rountev and Ryder 2001]: A large part of the library code
actually does not affect the points-to information of the pointers in user’s code. It is
also similar to the demand driven spirit that not all code is needed for computing the
points-to information of a pointer [Sridharan and Bodı́k 2006]. Therefore, we distill
the constraints before the points-to analysis in order to reduce the computation effort
without precision penalty.

Our approach can be more precise than that of Rountev’s [Rountev and Ryder 2001]
because we have the whole program prior to the analysis. We first identify the pointers
of which its points-to information is essential. The idea is, to obtain the points-to infor-
mation of q, we only need the points-to information of p or o.f if they are assigned to
q. This process is similar to searching the demanded constraints in Heintz et.al’s algo-
rithm [Heintze and Tardieu 2001]. Specifically, we find out all the essential pointers by
propagating marks on the final assignment graph produced by the Anderson’s
analysis, starting by marking the pointers appeared in the user’s classes. Next, we
distill the irrelevant constraints: q = p is irrelevant iff q is inessential, and q.f = p is
irrelevant iff all the instance fields o.f instantiated by p.f are inessential. In this way,
many pointers cannot obtain the points-to information after performing our algorithm.
To compensate these pointers, we directly inject the points-to information computed by
Anderson’s analysis into their points-to results.

With the constraints distillation technique, our points-to algorithm can be config-
ured as a demand driven analysis. The user can first specify the pointers that need
more precise points-to information, then perform the distillation algorithm to obtain
only the minimum set of constraints for evaluation. The points-to algorithm can also
be easily incrementalized based on the distillation technique. As an example, we
compute pts(p) and pts(q) in two queries. In the first query of computing pts(p), we
need the points-to information of x, y, z. In the second query of computing pts(q), we
need pts(x) and pts(u). Since pts(x) was fully computed, we can soundly reuse it in the
second query.

Offline Equivalent Pointers Merging. Equivalent pointers are those that have the
same points-to information at the end of the points-to analysis. Due to the temporary
variables introduced by the intermediate representation and the flow insensitivity,
many pointers have the same points-to results. Therefore, merging those equivalent
pointers before the points-to analysis can help terminate the algorithm earlier.

In the area of context insensitive analysis, Rountev et.al first propose an algorithm
to detect the equivalent pointers by mark propagation on the pointer assignment graph
before the constraints evaluation [Rountev and Chandra 2000]. Their mark propaga-
tion method is then slightly improved by Hardekopf et.al with global value numbering
[Hardekopf and Lin 2007b]. However, since the number of pointers is very large under
the full context sensitivity model, using the geometric encoding based version of these
algorithms is still expensive in time and memory.

Therefore, we employ a simple intraprocedural detection algorithm. Our algorithm
merges a local pointer q with another local pointer p, if they both local to the same
function and q = p is the only assignment that assigns to q. Under this condition,
we have pi 7→ oj ⇔ qi 7→ oj , ∀i ∈ [1, N ], where N is the context size of the enclosing
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Fig. 9. Geometric Merging Illustration. Picture (a) shows the input figures, and picture (b) outlines the
corresponding bounding rectangles.

function of p and q. This is because the segment (p, q, 1, 1, N) is the identity element
for any magma structure <S, ◦>. Therefore, our equivalent pointer merging technique
is precision preserving.

Geometric Merging. Reasoning with the geometric encoding may produce quite a lot
small geometric figures, due to the call edges between the functions with small context
sizes. In our running example, the function prepare is called three times in main, and
the return values are assigned to list1, list2 and list3, then assigned to p1, and finally
to p2. Along this way, we make three points-to tuples for p2, representing the points-to
information (p2)1 7→ o321 , (p2)2 7→ o322 and (p2)3 7→ o323 (Figure 6). The problem is, when
we evaluate p3 = p2.next, we will create three instantiated assignments. This, in turn,
reduces the compression efficiency and increases the analysis time.

To obtain good performance, we merge the small geometric figures into a larger one.
The merged geometric figure is the bounding rectangle of all the shapes described by
the extensions before merging, as shown in Figure 9. The merging plays as a widening
operator [Cousot and Cousot 1977] to speedup convergence. Since the merged figure
covers all the figures before merging, it is a sound approximation.

Merging, of course, sacrifices the precision. To select the pointer to merge, we set
two fractional parameters, referred to as δ1 and δ2, to limit the number of geometric
extensions every interpreter tuple (V1, V2) owns 12. In Algorithm 3, immediately af-
ter fetching a pointer, p, from the worklist, we check the number of geometric
extensions that every points-to tuple (p, o) and flow edge (p, q) own. We merge all the
extensions into a single rectangle if (p, o) (or (p, q)) has more than δ1 (or δ2) geomet-
ric extensions, and at least one of which is newly owned by (p, o) (or (p, q)), where the
term newly indicates that geometric extension is not propagated, in the vocabulary of
difference propagation [Pearce et al. 2003].

4.2. Soundness
THEOREM 4.1. Algorithm 3 is a sound points-to analysis.

PROOF. The soundness of the points-to Algorithm 3 has two parts: it always termi-
nates and it always produces safe solution. The termination is because the context for
every pointer and object is finite, thus, the number of possible geometric extensions
are finite. In the case of repeated geometric extensions are generated, calling addEdge

12If we have an encoded points-to fact (p, o, 1, 1, 2), we say (p, o) owns the extension (1, 1, 2).
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(Line 13, Line 19) and addPointsTo (Line 28) will return false. Therefore, the worklist
will finally be empty and the loop will exit.

Without the geometric merging, the fixed point solution is safe because according to
Lemma 3.1, Lemma 3.2 and Lemma 3.3, Algorithm 3 can be seen as an encoded version
of Algorithm 1. However, because we strictly let the geometric merging perform at the
start of the while loop, the fixed point solution is still safe. This is because the fixed
solution is a stationary state that for every constraint in the assignment graph, if
we have q ⊇ p, then ∀i, j, ∃k, pi 7→ oj ⇒ qk 7→ oj . If, pi 7→ oj is generated by the
geometric merging and the merging happened before the evaluation of the constraints
in which p is on the right hand side, we know that pi 7→ oj must be propagated at Line
27. Thus, the constraints are always interpreted according to their semantics, i.e., the
fixed solution computed by Algorithm 3 is safe.

5. IMPLEMENTATION
Unlike the Whaley-Zhu’s algorithm [Whaley and Lam 2004; Zhu and Calman 2004]
and the Xu’s algorithm [Xu and Rountev 2008], the geometric encoding based points-
to analysis allows almost all the mature implementation and optimization techniques
designed for Anderson’s analysis directly reusable in our algorithm. The constraints
distillation and offline equivalent pointer merging techniques, presented in Section
4.1, are two good examples. In this section, we first dive into the coding level to study
the data structures for the geometric descriptors and the priority worklist. These two
components are central to the implementation of the difference propagation and topol-
ogy based propagation [Pearce et al. 2003], both are proven to heavily influence the
performance of Anderson’s style algorithm. We also discuss the problem of dealing
with the contexts beyond 263 – because we use the java long type to manipulate the
contexts – and the issue of cleaning the spurious points-to information for the special
this pointer.

However, the technique of online cycle detection, proven very efficient for C programs
[Fähndrich et al. 1998], is omitted in our implementation. This is because Java is a
type safe language, the benefit of using the type filter in the points-to analysis can
be more significant than the online cycle detection [Lhoták 2002; Sridharan and Fink
2009]. Meanwhile, the type filter is not fully compatible with cycle detection and it is
not entirely clear how to keep the benefit of the type filter while incorporating the cycle
elimination. Therefore, it is not cost benefit to implement the online cycle detection in
our points-to engine.

5.1. Managing Geometric Descriptors
We have four tasks for the manager of the geometric descriptors. First, in the evalua-
tion of reasoning rules (Section 3.3.2), it can efficiently report all the existing figures
that have non-empty intersection with the input figure on the agent pointer. Second,
given a new geometric figure, it can quickly confirm whether it is covered by the com-
bination of existing figures or not. Third, if the new figure is not totally covered, we
should conversely find out all the existing figures that are covered by the new figure.
Fourth, it is able to seamlessly combine the existing figures to form a bigger one if
possible. For example, in the solution of example (Figure 6), the points-to tuples for p1
can be combined into (p1, o

32, 1, 1, 3) without precision loss.
Building a data structure that can efficiently solve our problem is hard, especially

we additionally require the data structure to be memory friendly. The data structure,
such as R-tree, is only efficient for the situation with massive data and more tree
modifying (insert and delete) operations than tree searching operations. It is not the
case for our problem setting because the number of geometric figures owned by each
pointer rarely exceeds one hundred, and most of them only have less than ten figures,
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according to our observation. The tree modifying operations are frequently performed,
because we must perform at least one insert or delete operation each time the addEdge
or the addPointsTo function is called. The other choices, such as the 2D interval tree,
is also not memory friendly in our case. Because, the size of the tree is proportional to
the maximum context size among all the functions.

Therefore, after our extensive experiments, we finally choose the linked list to store
the segments and rectangles. In this way, the first and the third tasks above are only
a linear scan through the linked list. The requirement for the second task is also sim-
plified that, for a queried figure, we only determine if there exists figure that can fully
cover the queried figure. The fourth job can be partially handled by the technique ge-
ometric merging (Section 4.1). And we do not perform additional actions because it
already works well. To support the differential propagation, we place all the newly in-
serted figures at the head of the lists and label them by new. Therefore, the function
propagate (Line 28 in Algorithm 3) only visits the figure labeled new.

5.2. Priority Worklist
As pointed out by the previous work [Pearce et al. 2003], the performance of Ander-
son’s analysis is significantly influenced by the worklist selection strategy (Line 8 of
Algorithm 3). Of course, the best strategy is that we always select the first node topo-
logically 13 in the worklist and maintain the topological order while the assignment
graph changes. However, this is too expensive to implement in practice. We develop a
hybrid approach inspired by the HCD technique proposed by Hardekopf et.al [Hard-
ekopf and Lin 2007a]. Precisely, we first build an offline assignment graph using the
constraints extracted from the code. For each p = q, we add an edge q → p. For each
q = p.f , we add an edge p.f → q. For each p.f = q, we add an edge q → p.f . Note
that, the symbol p.f is a wildcard for all the instance fields o1.f , o2.f , . . . , where o1,
o2, . . . are the unknown objects that are pointed to by p. Next, we topologically sort the
assignment graph by first collapsing the cycles, then, every node in the graph obtains
a topological value. Later during the points-to analysis, if we find that p points to o,
we immediately let the topological value of o.f equal to that of p.f . However, since we
have cycles in the graph, many pointers may gain the same topological value, which is
insufficient for sorting the pointers in the worklist. To complement the deficiency, we
apply the LRU (Least Recently Used) strategy [Pearce et al. 2003]. In short, we main-
tain a global time stamp. Each time a pointer is pushed into the worklist, we increase
the time stamp by one and assign it to that pointer. At last, the worklist strategy is
that the pointer owning the least topological value and the least time stamp is the next
one to be selected. Thus, it guarantees the total ordering of the pointers.

5.3. Contexts Beyond 263

We use Java primitive type long to define the csize function and implement the geomet-
ric descriptors. However, long only supports up to 263 − 1 (a.k.a MaxLong) contexts,
which is insufficient for the large programs. In case of csize[Y ]+ csize[X] exceeds Max-
Long (Line 9 of Algorithm 2), we mark the edge X → Y as exploded call edge and
randomly assign a value to callmap[X → Y ] between 0 and MAX LONG − csize[X], in
order to minimize the interferences among different exploded call edges to Y .

We simplify the blocking method as described in Section 3.5 to handle the exploded
call edges encountered in the blocking scheme. First, we only remap the recursive calls
to the new positions, keep the map-to positions of the non-recursive calls remain the
same. Second, since only the recursive calls are remapped, the context size of a newly
created block of function X in an SCC must be the value csize[X] before applying the

13The topological order is defined on the pointer assignment graph.
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blocking scheme. Therefore, in our implementation, we will construct Nin+1 blocks for
the functionX if no call edges are exploded and, all the none recursive calls are mapped
to the first block, where Nin is the number of incoming recursive calls. Otherwise, if
X → Y is an exploded edge, we do not create a new block for it. Instead, we randomly
reuse one of the existing blocks (at least the first block must be there).

5.4. Points-to filter for this pointer
Many Java methods retrieve the contents of an object through this pointer. Thus, better
precision for this pointer is absolutely desirable. The this pointer obtains its points-to
information from the base pointers at the callsites which invoke its enclosing func-
tion. For example, we have a callsite p.foo(...), it induces an assignment thisfoo = p.
However, due to the polymorphism, we may statically create many call edges to the dif-
ferent implementation of the function foo. Suppose we have pts(p) = o1, o2, o3, where
the objects o1, o2, and o3 are in the types A, B, and C respectively. The type A is a
super class of B and B is a super class of C, and, all three types provide their own
implementation of foo. In this situation, the type filter cannot prevent from passing
the objects o2 and o3 to the this pointer for the foo function implemented in type A.
In order to eliminate such spurious assignment, when a this pointer received an object
o, we check if we can resolve to the enclosing function of this this pointer through the
type of o. If we cannot, we remove o from the points-to set of this.

6. EVALUATION
The goal of the experiment is to examine the performance and precision characteristics
of our algorithm. We implement our geometric encoding (Geom) points-to algorithm in
the Soot framework 14. We choose the 1-object-sensitive algorithm [Milanova et al.
2005] implemented in Paddle [Lhoták 2006] as the representative of the existing con-
text sensitive analysis, because Lhoták et.al [Lhoták and Hendren 2008], beside us,
also consider it providing the best tradeoff between precision and analysis efficiency.
We use the worklist based implementation of the 1-object-sensitive analysis and refer
to it 1-obj-W. We do not use the BDD version because it is too slow and always crashes
due to unknown reason, which is also observed by Xu et.al [Xu and Rountev 2008] and
in our previous experiment [Xiao and Zhang 2011]. We compare the performance of
Geom and 1-obj-W by measuring their time and memory usage. And we assess their
precision by the average points-to set size metric and three clients: virtual call res-
olution, static casts analysis, and alias analysis, all of which are widely used in the
points-to analysis literature.

Our reference implementation has been accepted by the Soot maintenance team, and
it was available since version 2.5. Any interested readers can download the software
15 and use it in your own work.

6.1. Experimental Setting
Environment. We use the nightly built Soot as the analysis engine and employ Sun
JDK 1.4 to 1.6 as the program analysis base library. To the best of our knowledge,
this is the first time using JDK 1.5 or above versions in the context sensitive points-to
analysis. Soot itself is powered by JRokit 28.1 running in the server mode and
parametrized for minimum JVM latency, i.e., the minimum/maximum heap size are
both set to 30GB in order to reduce the JVM memory management time (memory
fetching and garbage collection). All the evaluation data are collected on a 64-bit

14http://www.sable.mcgill.ca/soot/
15A patch has been submitted to fix some known bugs in version 2.5. Please download the newest version or
use the nightly built version whenever available.
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Table IV. Summary of the benchmarks. The LOC column counts the lines of code for the Jimple IR. The Constraints
column shows the percentage of constraints that is really feed to the geometric points-to analysis.

Program LOC Constraints Max Contexts Methods Max SCC JDK Source
Sm

al
lS

ui
te

jflex 141.3K 63.2% 3.9 × 109 10533 3814 1.4 Ver 1.3.5
soot 103.3K 74.2% 9.3 × 1011 7254 1718 1.4 Ashes
sableCC 152.1K 68.2% 4.7 × 1010 12179 3710 1.4 Ashes
ps 103.1K 70.1% 5.2 × 1010 8039 2106 1.4 beta050224
antlr05 85.6K 67.6% 1.0 × 1012 5708 1675 1.4 beta050224
bloat05 129.0K 75.2% 1.0 × 1011 8187 2575 1.4 beta050224
pmd05 90.2K 66.3% ≥ 263 6094 1610 1.4 beta050224
jedit1 270.8K 70.5% 7.6 × 108 17548 7993 1.4 Ver 4.0
megmek 303.3K 71.0% 1.0 × 1011 17379 7552 1.4 Ver 0.30.0

M
id

dl
e

Su
it

e

antlr06 153.1K 68.2% 1.3 × 1014 9831 2568 1.6 2006MR2
bloat06 190.0K 73.2% 7.3 × 1012 11745 3414 1.6 2006MR2
jython 188.0K 76.0% 5.3 × 109 12729 4259 1.6 2006MR2
luindex 145.8K 67.3% 4.2 × 109 9593 2550 1.6 2006MR2
pmd06 173.4K 69.2% ≥ 263 11103 2612 1.6 2006MR2
xalan 138.2K 53.6% 1.8 × 109 9106 2548 1.6 2006MR2
chart 384.4K 66.6% 3.6 × 1013 25083 7381 1.6 2006MR2
eclipse 163.0K 69.4% 7.5 × 109 10372 2913 1.6 2006MR2
hsqldb 139.1K 66.8% 2.2 × 109 9104 2565 1.6 2006MR2

L
ar

ge
Su

it
e batik 411.9K 66.8% ≥ 263 26193 8398 1.6 9.12bach

sunflow 334.0K 63.3% ≥ 263 22520 7051 1.6 9.12bach
tomcat 363.1K 65.9% ≥ 263 25232 8027 1.6 9.12bach
h2 278.5K 76.9% ≥ 263 16834 6301 1.6 9.12bach
jedit2 414.2K 70.1% 4.6 × 1010 26470 9985 1.5 Ver 4.3.2

machine with an Intel Xeon 3.0G processor running Linux 2.6.32.

Benchmarks. Our benchmarking programs are divided into three suites. The first
two suite contain a set of small and middle sized programs, analyzed with JDK 1.4
and 1.6. These two suites are mainly used for the comparison to 1-obj-W, because
1-obj-W is running out of memory on our largest suite. The last suite is majorly used
for the self-assessment of scalability. All the basic information of these three suites
can be found in Table IV. The labels Ashes, beta050224, 2006MR2 and 9.12bach in
the Source column indicate these programs are selected from the Ashes 16, Dacapo-
beta050224, Dacapo-2006-10-MR2 and Dacapo-9.12bach benchmark collections. We
select all the programs from the Dacapo-2006-10-MR2 suite except the cases lusearch
and fop, because SPARK throws an exception for unknown reasons. The programs
selected from Dacapo-9.12bach are all processed by feeding the default input to
Tamiflex for the reflection resolution [Bodden et al. 2011].

Parameters. The initial call graph used to bootstrap our context sensitive analysis
is computed by SPARK [Lhoták and Laurie 2003]. SPARK is running without offline
simplification (simplify-offline and simplify-sccs are both false) and treat every allo-
cation site of StringBuffer individually (merge-stringbuffer is false). Both SPARK and
Paddle are running with on-the-fly call graph construction [Lhoták 2006]. We choose

16http://www.sable.mcgill.ca/ashes/
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80 and 40 for the fractional parameters δ1 and δ2 (geom-frac-base is 40), which exhibit
a good performance and precision trade-off. The classification of the code to user’s and
library’s classes, required by constraints distillation technique, are judged from the
package name. To be conservative, we only treat the package names with the prefixes
java, javax, sun and com.sun as the library code. This configuration is conservative
enough to allow our points-to engine to analyze all the user’s code.

6.2. Performance

Table V. Summary of the time and memory usage for all evaluated algorithms.

Program Preprocess (s) Time (s) Memory (MB)
SPARK Geom-1 1-obj-W SPARK Geom-1 1-obj-W

M
ic

ro
Su

it
e

jflex 0.3 45.6 73.6 2676.8 1123 4532 10621
soot 0.2 30.2 60.9 401.8 1023 2045 4571

sableCC 0.3 49.5 83.1 3624.4 1677 5240 9392
ps 0.2 34.5 88.0 484.0 1049 4006 4884

antlr05 0.1 22.4 17.4 309.8 475 1293 3297
bloat05 0.3 32.3 406.1 901.8 1127 5104 7688
pmd05 0.4 22.9 37.6 334.9 704 2115 3747
jedit1 0.9 91.8 495.7 – 2809 14479 –

megmek 0.7 103.2 435.8 – 2956 19418 –

M
id

dl
e

Su
it

e

antlr06 0.8 40.4 50.5 10814.7 925 2139 13593
bloat06 0.4 51.3 186.4 13115.5 1333 4283 19133
jython 0.4 50.5 216.4 17699.2 1457 7465 25449
luindex 0.7 38.3 47.8 8536.5 1175 2055 12598
pmd06 0.3 45.8 67.2 12117.4 1408 5060 14789
xalan 0.7 36.2 46.6 7223.3 951 1833 11808
chart 0.9 161.3 541.0 32671.2 4969 21436 29393

eclipse 0.3 42.8 71.5 12560.0 1248 2494 19756
hsqldb 0.7 37.0 53.2 7197.2 1175 1917 11564

L
ar

ge
Su

it
e batik 1.0 286.9 865.7 – 5761 25412 –

sunflow 0.8 131.2 507.4 – 3786 14440 –
tomcat 1.1 192.3 758.0 – 5391 21867 –

h2 0.6 82.2 196.8 – 2373 8390 –
jedit2 1.3 168.8 927.0 – 5953 27034 –

The time and memory usage for all the evaluated algorithms are collected in Table
V, in which the subjects labeled “–” are those running out of memory. The running
time for Geom excludes the time of SPARK but its memory usage includes the memory
used by SPARK. From the table we see, even for the largest benchmark jedit2 with
more than 26,000 methods, Geom can finish within 20 minutes (927s+169s). This is
an important result because there is no reported context sensitive points-to analysis
scales to this level. Statistically, Geom is on average 17 7.1X and 81.9X faster than
1-obj-W in the small and middle suites, where the time usage for Geom counts for the
time used by SPARK. In terms of the absolute running time, we claim our algorithm
is more practical than the 1-obj-W implemented in Paddle considering that in reality,

17In this paper, average means the geometric mean.
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the points-to analysis would run many times in the course of software testing and
debugging, as well as in the development of the new research prototypes based on the
points-to information.

Memory consumption is the major hindering factor of scaling the context sensitive
points-to algorithms. On average, our algorithm Geom requires 1.9x and 4.5x less
memory than 1-obj-W for the small and middle suites. The efficiency of our algorithm
is significantly contributed by the constraints distillation and offline variable merging
techniques. The column #Constraints shows 31.5% of the constraints extracted from
SPARK are removed from the geometric points-to computation on average. And in our
experience, removing these constraints retain 30% performance 18 while only using
1 second preprocessing time even for the largest benchmark. We believe more con-
straints can be removed in the case that the user performs a demand driven analysis
to compute the refined points-to information for only a small fraction of pointers, in
contrast to all the pointers in our experiment.

Although BDD is proven to be extremely memory efficient, its time efficiency is un-
satisfiable. Many recent researchers reveal that, without BDD, we can do much bet-
ter for the algorithms that produce less redundancy, especially in the case of heap
cloning [Xu and Rountev 2008; Bravenboer and Smaragdakis 2009a; Hardekopf and
Lin 2007a; Xiao and Zhang 2011]. In our design principle, time is a more critical re-
source than memory. We expect our algorithm can help those programmers, who re-
quire a much better memory disambiguation tool than SPARK, but they always work
on large code base and have little patience on waiting for the points-to computation.
The performance experiment has already successfully demonstrated that our algo-
rithm is fast and scalable, in the next section, we will examine the precision quality of
our algorithm especially the capability of reducing the aliased pointer pairs.

6.3. Precision
Average Points-to Set Size. The average points-to set size is a widely used metric for
precision assessment. Although the smaller the better, it cannot be pervasively used
to predict the benefits to the clients. For example, it is not a good indicator for the
clients call graph construction and casts safety analysis, because these clients desire
less variance in types for the objects in the points-to set and, the smaller points-to set
does not mean less types. However, it is in general a good precision indicator for the
clients that need to traverse the points-to graph, such as side effect analysis, informa-
tion flow analysis, and thread escape analysis, because smaller points-to set usually
means less spurious information is propagated in these clients. Therefore, we give the
metric here for whom may concern.

In this paper, we only consider the local pointers defined in the user’s code and the
instance field pointers with its base object allocated in the user’s code. The points-to
set for a pointer p is the merging of the points-to sets of p under all contexts. We
list the results in Table VI. In summary, the numbers for the small suites show that
SPARK has 2.3X and 3.3X larger points-to sets than Geom and 1-obj-W. 1-obj-W
performs better than Geom especially on the case antlr05. Without this outlier case,
the improvements over SPARK are 2.1X and 2.6X. On the middle suites, Geom and
1-obj-W have 2.6X and 2.5X smaller points-to sets than SPARK. These results show
that Geom and 1-obj-W work closely well. And both of them produce much more
precise points-to information than SPARK.

18Our early paper reports 17% performance gain by using only the constraints distillation [Xiao and Zhang
2011].
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Table VI. The average points-to tuples and the number of static casts proven to be safe.

Benchmark Avg. Points-to Tuples Safe Static Casts
SPARK Geom 1-obj-W Total SPARK Geom 1-obj-W

M
ic

ro
Su

it
e

jflex 124.2 40.6 41.3 584 1 +0 +0
soot 74.5 41 35.5 1070 174 +9 +10

sableCC 48.5 23.1 13.6 531 168 +1 +6
ps 135.3 107.7 148.8 676 17 +79 +79

antlr05 54.2 13.2 3.5 80 16 +2 +3
bloat05 160.5 112.3 69.1 1480 130 +7 +35
pmd05 35.9 10.2 6.1 295 12 +5 +5
jedit1 121.7 86.9 – 799 97 +13 –

megmek 136.1 102.9 – 1705 62 +7 –

M
id

dl
e

Su
it

e

antlr06 28.9 8.5 6.7 82 18 +2 +6
bloat06 172.6 66.9 72.5 1346 127 +4 +34
jython 113.5 76.2 83.2 677 176 +4 +24
luindex 18.5 4.9 6.8 63 12 +4 +10
pmd06 39.9 33.0 12.3 529 45 +6 +5
xalan 6.2 1.6 2.7 6 2 +0 +3
chart 100.7 77.5 66.6 692 77 +10 +34

eclipse 59.9 17.7 19.1 312 76 +2 +13
hsqldb 8.8 1.7 3.1 12 2 +0 +3

L
ar

ge
Su

it
e batik 243.3 174.4 – 885 129 +26 –

sunflow 38.2 16.3 – 48 12 +5 –
tomcat 68.6.4 38.9 – 156 46 +6 –

h2 200.9 66.7 – 968 68 +18 –
jedit2 180.9 111.5 – 972 149 +32 –

Static Casts safety. The number of static casts that are proven to be safe is recently
a widely cited metric [Sridharan and Bodı́k 2006; Xu and Rountev 2008; Smaragdakis
et al. 2011]. This client is a good candidate for diagnosing the points-to information be-
cause the pointers involved in the casts would probably use the polymorphism feature
of Java so that they always receive the objects from different calling contexts. Thus,
the context sensitive points-to analysis can give full scope to its power.

We summarize the results in Table VI. Overall, 1-obj-W performs better than Geom.
The reason is the static casts often happen in the places where the pointers read from
a container (i.e. HashSet, ArrayList). Since the object sensitivity excels in analyzing
the container data structures [Milanova et al. 2005], 1-obj-W is expected to perform
better. Our observation is also consistent with Lhoták et.al [Lhoták and Hendren
2008], who also notice that the object context sensitive algorithms are better than the
callsites based approaches in the static casts safety analysis. However, we will see in
Section 6.4, as we iterate our algorithm one more time, the points-to results for static
casts analysis can be greatly improved.

Virtual Call Resolution. Call graph construction is an important application of the
points-to analysis. Since Java treats all the member functions as virtual functions,
building the precise call graph is a challenging problem. We use the evaluated algo-
rithms to build the context insensitive call graph (CICG). A virtual call is solved iff we
have a unique callee for that callsite, where the callees for a callsite are decided by the
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context insensitive points-to result by merging the points-to sets of the same pointer
under different contexts. For all the unsolved callsites in CICG, we also check the 1-
CFA cloned call graph (1-CCG) to see how many of them can be solved under different
calling contexts. The 1-CCG for Geom is constructed by naturally mapping the k-CFA
abstraction to 1-CFA abstraction, while the 1-CCG for 1-obj-W is constructed by first
collecting all the call edges that are associated to a particular object context, then we
compute the set of object contexts for each call edge. With this information, we know
for each function invoked by a particular call edge, which object contexts we should
inspect.

Table VII. Virtual Call Resolution. CICG reports the number of resolved virtual callsites in the
context insensitive call graph relative to to the SPARK column. 1-CCG reports the percentage of
resolved virtual callsites in the 1-CFA call graph. 39.1% (105) means 39.1% out of 105 callsites in
the 1-CCG are solved.

Benchmark Total CICG 1-CCG
SPARK Geom 1-obj-W Geom 1-obj-W

M
ic

ro
Su

it
e

jflex 2580 2561 +7 +7 39.1% (105) 1.5% (86)
soot 5725 5384 +3 +2 8.9% (6701) 2.1% (6462)

sableCC 3949 3645 +15 +55 2.4% (461) 0.85% (351)
ps 2338 2034 +3 +3 0.2% (3943) 0.0% (3941)

antlr05 4465 4070 +1 +2 2.4% (996) 0.0% (984)
bloat05 12479 11840 +22 +27 25.0% (8026) 3.0% (8100)
pmd05 1985 1975 +0 +0 5.9% (17) 0.0% (17)
jedit1 12089 11665 +35 – 4.6% (2258) –

megmek 31682 30667 +100 – 6.9% (4225) –

M
id

dl
e

Su
it

e

antlr06 4548 4158 +4 +0 3.1% (907) 0.1% (896)
bloat06 12013 11410 +17 +44 24.9% (8272) 3.0% (8184)
jython 7006 6558 +25 +95 9.6% (2201) 3.3% (1505)
luindex 1195 1074 +57 +94 79.5% (122) 19.4% (31)
pmd06 3632 3617 +3 +0 5.4% (37) 40.5% (53)
xalan 311 309 +2 +2 – –
chart 8639 8349 +106 +117 29.6% (1187) 12.9% (651)

eclipse 3561 3448 +19 +21 14.5% (482) 4.8% (441)
hsqldb 552 527 +17 +12 0.0% (26) 17.9% (41)

L
ar

ge
Su

it
e batik 7111 6642 +32 – 15.8% (2898) –

sunflow 946 937 +15 – 0.0% (6) –
tomcat 2020 1946 +23 – 25.6% (496) –

h2 18795 16673 +55 – 5.5% (35832) –
jedit2 14880 14208 +40 – 13.4% (3873) –

The result of virtual call resolution for the callsites in the user’s code is collected
in Table VII. Because Geom and 1-obj-W compute slightly different sets of reachable
user’ methods and 1-obj-W is more precise in the call graph construction 19, we take
the set obtained by 1-obj-W as the baseline. In the CICG construction, 1-obj-W is rela-
tively better than our algorithm. The cases sableCC and luindex are notable, 1-obj-W
works significantly better on them than Geom because they frequently employ the de-
sign patterns, specifically, the visitor pattern for sableCC and the strategy pattern for

19Because 1-obj-W computes the call graph on-the-fly, but Geom uses a precomputed call graph by SPARK.
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luindex. Both patterns are data centric, i.e., the way to modify the data is either de-
cided by the input visitors or the overridden methods associated with the data object.
Therefore, these programs are more naturally to be processed in the object sensitivity
way. But still, we can run Geom one more time to significantly improve the CICG. The
experimental result is given in Section 6.4.

It is interesting to find that our algorithm Geom shows strong potential in precisely
constructing the 1-CCG. Taking the subject jflex as an example, the data 39.1% (105)
means 39.1% of the 105 unsolved callsites 20 are solved. We cannot compare Geom and
1-obj-W directly because the constructed 1-CCG are different in the two algorithms 21.
Nevertheless, there are still quite a few callsites solved in the 1-CCG, especially for
the cases bloat06, luindex and chart, etc. Therefore, Geom provides an opportunity to
navigate the call graph traversal algorithms in a precise way.

Alias Analysis. A high quality aliased pointer expressions disambiguator is crucial
to many programming tools. In Java, the field access expression p.f incurs the cross
function information flow. Therefore, the less the alias-to pointers for the base pointer
p, the more precise for tracking the information flow through heap variables. To eval-
uate the quality of the points-to analysis serving the alias queries, we find out all the
base pointers p that appear in the field access expressions in the user’s code, and then,
we exhaustively enumerate two pointers p, q and intersect their points-to sets. The
intersection does not account for the string constants and the heap sensitivity feature
is used by Geom. Our earlier paper [Xiao and Zhang 2011] uses a different alias eval-
uation methodology, in which it enumerates all pairs of pointers accessed in the same
function. Although this method is also used at other places [Das et al. 2001; Lattner
et al. 2007], we do not follow the way because it is not meaningful to consider the
pointers that cannot cause read or write conflicts to other pointers.

The alias analysis result is presented in Figure 10. We take the number of alias
pairs in SPARK as the baseline, hence, the alias analysis quality for Geom and 1-obj-
W is characterized as the percentage of alias pairs produced by SPARK. Geom and
1-obj-W respectively reduce 71.7% and 59.0% alias pairs made by SPARK (the out of
memory cases for 1-obj-W are excluded), indicating that they both are significantly
better than SPARK at the memory disambiguation and Geom is even better. Including
all cases, Geom reduces 63.1% alias pairs than SPARK. This result is consistent with
our earlier paper [Xiao and Zhang 2011]. In the cases where the number of contexts
exceed 263 (overflowed), especially the subjects in the largest suite, the eliminated fake
alias pairs are dramatically less than other programs. This is because the overflowed
methods cannot enjoy the benefits of context sensitivity even with the 1-CFA SCC
modeling, which causes high damage to the precision.

The achievement of Geom in alias analysis, of course, attributes to the heap cloning
and the 1-CFA model for SCCs, although we use a small fractional parameter (geom-
frac-base = 40) in the evaluation. Since our algorithm requires much less computing
time and memory, the result reported in this paper is noteworthy and significant.

6.4. Iterative Analysis
Since our algorithm Geom reuses the call graph built by SPARK, the vast amount of
spurious call edges significantly affect the subsequent context sensitive points-to com-
putation. A simple idea is to update the call graph with the new points-to information
computed by Geom and then, rerun Geom with the refined call graph. Following this

20After the 1-CFA cloning, the 12 unsolved callsites in the CICG are cloned to 105 callsites.
21Therefore, the conclusion that Geom is more precise than 1-obj-W in our earlier paper [Xiao and Zhang
2011] is not valid.
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Fig. 10. Alias analysis. Each bar stands for the percentage of alias pairs of that computed by SPARK.

Table VIII. Performance and precision data for running Geom2.

Benchmark Time (s) Avg. Points-to Safe Casts CICG
1-obj-W Geom 1-obj-W Geom 1-obj-W Geom

M
id

dl
e

Su
it

e

antlr06 +29.0 -1.8 -0.7 +4 +1 -4 +0
bloat06 +138.3 +5.6 -2.2 +30 +1 +27 +1
jython +87.7 +7 -6.1 +20 +4 +70 +26
luindex +26.2 +1.9 -0.5 +6 +0 +37 +40
pmd06 +39.6 -20.7 -5.7 -1 +0 -3 +0
xalan +33.2 +1.1 -0.4 +3 +0 +0 +0
chart +144.5 -10.9 -6.8 +24 +10 +11 +4

eclipse +43.5 +1.4 -2.2 +11 +1 +2 +0
hsqldb +28.3 +1.4 -0.4 +3 +0 -5 +0

process, we can run Geom again and again until the call graph cannot be refined. We
call this procedure iterative analysis and expect the precision to be greatly improved.
To prove our claim, we collect the performance and precision data of the middle suites
in Table VIII and Table IX by running Geom twice and thrice. We refer to the two
iterative analyses as Geom2 and Geom3. Interesting readers could use the soot phase
option geom-runs to set how many runs are performed by the geometric analysis.

The data of Geom2 and Geom3 are given in relative to the corresponding values
of Geom. For example, the value “+29.0” in the program antlr06 means that Geom2
needs another 29 seconds to finish the analysis. The results for 1-obj-W are also given
in relative form to help the readers observe the power of iterative analysis intuitively.
It is interesting that the running time for Geom2 and Geom3 is not 2X and 3X to that of
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Table IX. Performance and precision data for running Geom3.

Benchmark Time (s) Avg. Points-to Safe Casts CICG
1-obj-W Geom 1-obj-W Geom 1-obj-W Geom

M
id

dl
e

Su
it

e
antlr06 +61.7 -1.8 -0.7 +4 +1 -4 +0
bloat06 +272.9 +5.6 -2.3 +30 +1 +27 +1
jython +205.9 +7 -6.1 +20 +6 +70 +30
luindex +55.2 +1.9 -0.6 +6 +1 +37 +40
pmd06 +70.3 -20.7 -5.7 -1 +0 -3 +0
xalan +47.6 +1.1 -0.4 +3 +0 +0 +0
chart +376.2 -10.9 -7.8 +24 +10 +18 +11

eclipse +82.7 +1.4 -2.2 +11 +1 +2 +0
hsqldb +53.1 +1.4 -0.4 +3 +0 -5 +0

Geom. I(n fact, the execution times for Geom2 and Geom3 are only on average 1.6X and
2.1X to Geom. This is because each iteration would significantly reduce the call graph
size. Also, from the second iteration on, we use the geometric points-to result computed
so far to boot the constraints distillation. By these means, the analyzed constraints
in the second and third runs are dramatically reduced and, the computing time for
subsequent iterations becomes less and less 22.

We also collect the call graphs and the constraints information for the programs in
the middle suites in Table X to highlight the improvements by the iterative analy-
sis. We can draw three conclusions from the table. First, the usefulness of iterative
analysis is prominent since both Geom2 and Geom3 are much better than Geom in
all three metrics. Second, the precision of Geom2 and Geom3 is almost identical. This
result suggests that running the geometric analysis twice in practice is a good choice.
Third, 1-obj-W is better in the call graph construction. This is expected because 1-obj-
W constructs the call graph on-the-fly, which is realized as a better way than using a
precomputed call graph [Lhoták 2002]. However, exactly because of using the precom-
puted call graph, we can get rid of the restriction that many contexts are unknown
at the beginning and encode the contexts in a concise way, and finally, promote the
points-to analysis to a very large scale.

7. RELATED WORK
Points-to analysis is a well studied subject of a large body of work. We have given a
detailed classification of the points-to literature in Section 1.2. In this section, we com-
pare our work to the most related and recent algorithms, all of which are in the cate-
gory of designing or engineering an extremely fast yet still precise points-to analysis.
Our comparison focuses on the implementation issues, and, we explain the advances
of our geometric points-to analysis over theirs.

One of the pioneer that recognizes the importance of data representation, bddb-
ddb, is a highly flexible engine designed by Whaley et al., aimed for prototyping a
range of points-to based algorithms [Whaley and Lam 2004]. The points-to analysis
shown in bddbddb is the first scalable full context sensitive analysis. Compared to our
work, bddbddb lacks the support for heap cloning and 1-CFA model of SCCs. There-
fore, as pointed out by Lhoták [Lhoták and Hendren 2008], the precision of bddbddb
is only comparable to the 1-callsite-sensitive analysis, which is both less precise and
less efficient than the 1-object-sensitive analysis used in our evaluation. We cannot di-

22Timing may be affected by garbage collection significantly, thus, some programs such as jython need more
time in the third iteration than the second.
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Table X. Statistics for call graph and constraints.

SPARK 1-obj-W Geom Geom2 Geom3

an
tl

r #total methods 9831 7266 8749 8397 8395
#user methods 810 754 775 773 773
#constraints – – 68.2% 55.9% 54.0%

bl
oa

t #total methods 11745 9133 10696 10347 10345
#user methods 2603 2487 2541 2540 2540
#constraints – – 73.2% 62.2% 60.9%

jy
th

on #total methods 12729 8785 10486 10163 10138
#user methods 3470 2072 2244 2108 2089
#constraints – – 76.0% 48.4% 45.0%

lu
in

de
x #total methods 9593 6874 8422 8003 8001

#user methods 541 354 422 378 378
#constraints – – 67.3% 53.5% 51.0%

pm
d #total methods 11103 8302 9886 9540 9538

#user methods 2008 1750 1793 1791 1791
#constraints – – 69.2% 56.0% 54.5%

xa
la

n #total methods 9106 6579 8052 7685 7683
#user methods 810 57 57 57 57
#constraints – – 66.5% 53.6% 51.1%

ch
ar

t #total methods 25083 11733 20984 19339 19192
#user methods 3168 2390 2599 2576 2576
#constraints – – 66.6% 50.1% 45.8%

ec
lip

se #total methods 10372 7707 9245 8801 8798
#user methods 1125 998 1031 1027 1027
#constraints – – 69.4% 55.8% 53.7%

hs
ql

db #total methods 9104 6559 8036 7666 7664
#user methods 58 54 54 54 54
#constraints – – 66.8% 53.6% 51.1%

rectly compare our implementation with bddbddb, because their compiler models the
program in a different way from Soot [Bravenboer and Smaragdakis 2009a]. But as
shown by Lhoták [Lhoták and Hendren 2008], the Paddle’s version of Whaley’s algo-
rithm is slower than the 1-object-sensitive analysis, which is an evidence to claim that
our performance superiority over bddbddb.

The EPA algorithm is the first, in our knowledge, to realize the limitation of improv-
ing the efficiency of a precise points-to algorithm with BDD [Xu and Rountev 2008].
Instead, it presents an interesting way to compress the points-to information by merg-
ing the equivalent contexts that yield a set of points-to tuples in the same structure.
Our geometric encoding can be seen as a simpler and more compact interpretation of
their core idea with the extension to handling the globals more precisely. However,
the EPA algorithm has a sophisticated implementation that we did not manage to suc-
cessfully port it to our experiments, thus, we cannot compare to EPA directly in this
paper. However, as a functional approach, EPA needs to perform additional procedures
to compute the escaped objects, instantiate and merge the symbolic objects, and re-
move the context information for the objects pointed to by the global variables. From
their comparison to the BDD based 1-object-sensitive analysis and the fact that BDD
based 1-object-sensitive analysis is orders of magnitude slower than the worklist ver-
sion [Xiao and Zhang 2011], we conjecture that EPA is hard to beat our algorithm that
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is not bundled with extra procedures. Of course, we will try in future to make a fair
comparison to EPA.

Doop is the most recent one to reveal that BDD is not a proper data representation
for the points-to analysis producing less redundancy [Bravenboer and Smaragdakis
2009a]. Doop is fully declarative points-to framework with rich features. including
the declarative on-the-fly call graph construction and exception handling. Similar to
our work, Doop’s high performance is also obtained from non-BDD based points-to
representation and constraints evaluation. But Doop does not develop any compressed
representation so that its points-to and pointer assignments information is explicitly
stored without compaction. Since reproducing their experiments is almost impossible
due to their use of a highly optimized Datalog engine, we doubt that whether or not the
Doop’s approach is a practical solution to be widely adopted. Our geometric points-to
analysis is much simpler to be re-implemented, since no particular software is used
in our design. As our submitted code has been integrated into Soot, we believe our
solution will be a easier way to help the researchers experience the power of a fast and
precise points-to analysis.

8. CONCLUSION AND FUTURE WORK
In this paper, we present an efficient and precise context sensitive points-to analysis
with heap cloning, based on our simple and compact geometric encoding. Our new al-
gorithm has excellent performance, which is on average 81.9X faster than the worklist
based 1-object-sensitive analysis implemented in Paddle. Meanwhile, with extensive
experiments we show that their precision is close. Our geometric analysis implementa-
tion has been accepted by the Soot maintenance team and it is available since version
2.5. Our future work will consider how to incorporate the on-the-fly call graph con-
struction with geometric encoding. We have faith that, all the techniques (geometric
encoding, constraints distillation and 1-CFA model for SCCs) proposed in this paper
make important contributions to engineer a fast and precise context sensitive points-to
analysis for the large scale software.
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